Treatment of water inflow from flooded underground mines

The study focuses on the adverse effect exerted on the environment by temporary shutdown and closure of underground mines by means of flooding. Closure of underground mines only terminates the structural and technological transformation of geological rock mass while detrimental effect on the natural environment of underground mines remains and even becomes more severe sometimes. Some hazards are revealed, which initiate new phenomena and processes, and are mainly connected with flooding of underground mines. Such hazards are groundwater rise, flow of water from flooded mines to operating mines, ground surface deformation due to subsidence and entry of pollutants in underground aquifers and surface water bodies. In terms of a flooded mine in East Donbass, the method of catchment of water outlet from the flooded mine and dispersion to a man-made biological pond is described. The biological pond is split into zones. First, there is a shallow place with planting for activation of growth of iron bacteria; here, removal of iron ions from mine water takes place. Then, water flows to the pond for the further bio-oxidation and treatment of water up to the standard MAC. The article offers recommendations on making of the biological pond and a trench for water flow from mine. The required volumes and sizes of the biological pond, trench and activation zone for iron bacteria are calculated. Treated mine water, via a dam, will be fed to a water storage reservoir.

Keywords: mine closure, flooded mine, sinkhole, biological pond, iron bacteria, mine water, aquifer.
For citation:

Kulikova A.A., Stelmakhov A.A., Bacheva T.A., Tsymbal M. N. Treatment of water inflow from flooded underground mines. MIAB. Mining Inf. Anal. Bull. 2020;(6):38-47. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-38-47.

Acknowledgements:
Issue number: 6
Year: 2020
Page number: 38-47
ISBN: 0236-1493
UDK: 622.841(571.17)
DOI: 10.25018/0236-1493-2020-6-0-38-47
Article receipt date: 11.03.2020
Date of review receipt: 26.03.2020
Date of the editorial board′s decision on the article′s publishing: 20.05.2020
About authors:

A.A. Kulikova1, Senior Lecturer, e-mail: alexaza_@mail.ru,
A.A. Stelmakhov1, Cand. Sci. (Econ.) Assistant Professor, e-mail: 1predsedatel@mail.ru,
T.A. Bacheva, Mining Engineer, e-mail: tanya-zavdoveva2016@yandex.ru,
M.N. Tsymbal, Senior Lecturer, e-mail: cymbal_mar@mail.ru, Sergo Ordzhonikidzе Russian State Geological Prospecting University (MGRI-RSGPU), 117997, Moscow, Russia,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

A.A. Kulikova, e-mail: alexaza_@mail.ru.

Bibliography:

1. Pelipenko M. V., Balovtsev S. V., Aynbinder I. I. Integrated accident risk assessment in mines. MIAB. Mining Inf. Anal. Bull. 2019;(11):180-192. [In Russ]. DOI: 10.25018/0236-14932019-11-0-180-192.

2. Krechetova E.A., Iofis M.A. Ecological consequences of the liquidation of coal mines in the East Donbass. Nauchnyy vestnik Moskovskogo gosudarstvennogo gornogo universiteta. 2011, no 11, pp. 35—40. [In Russ].

3. Batugin A., Kolikov K., Ivannikov A., Ignatov Y., Krasnoshtanov D. Transformation of the geodynamic hazard manifestation forms in mining areas. International Multidisciplinary Scientific Geoconference SGEM. 2019. Vol. 19. No 1.3. Pp. 717—724. DOI: 10.5593/sgem2019/1.3/S03.091.

4. Zakharova A.A., Vishnevskaya E. P. Identification of a sinkhole zone and planning of measures for its elimination based on the analysis of mining and graphic documentation for the field of mine No. 12 in Kiselevsk. Issledovaniya po geoinformatike: trudy Geofizicheskogo tsentra RAN. 2017. Vol. 5, no 2, pp. 61—71. [In Russ]. DOI:10.2205/2017BS045.

5. Lebedev V. S., Skopintseva O. V., Savel'ev D. I. Research of residual gas-bearing capacity of coal with thermal influence. Gornyi Zhurnal. 2014, no 5, pp. 20—22. [In Russ].

6. Lebedev V. S., Skopintseva O. V. Residual coalbed gas components: Composition, content, hazard. Gornyi Zhurnal. 2017, no 4, pp. 84—86. [In Russ]. DOI: 10. 17580/gzh.2017.04.17.

7. Ganova S. D., Skopintseva O. V., Isaev O. N. On the issue of studying the composition of hydrocarbon gases of coals and dust to predict their potential hazard. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2019. Vol. 330, no 6, pp. 109—115. [In Russ].

8. Kulikova E. Yu. Estimation of factors of aggressive influence and corrosion wear of underground structures. Materials Science Forum. 2018. Vol. 931. Pp. 385—390. DOI: 10.4028/www. scientific.net/MSF.931.385.

9. Kulikova E. Yu. Assessment of polymer materials environmental compatibility in underground development. Ekologiya i promyshlennost' Rossii. 2016, Vol. 20, no 3, pp. 28—31. [In Russ].

10. Kulikova E. Yu. Assessment of operating environment of concrete lining of sewage collector tunnels. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 687. Article 044035. Pp. 1—7. DOI: 10.1088/1757-899X/687/4/044035.

11. Markina N. K., Babaev M. V., Dotsenko E.A. Improving the environmental safety of mine water disposal in the Lviv-Volyn coal basin. Tekhnologicheskiy audit i rezervy proizvodstva. 2016. Vol. 6, no 3 (32), pp. 57—63. [In Russ].

12. Balovtsev S. V., Shevchuk R. V. Geomechanical monitoring of mine shafts in difficult ground conditions. Gornyy informatsionno-analiticheskiy byulleten’. 2018, no 8, pp. 77—83. [In Russ]. DOI: 10.25018/0236-1493-2018-8-0-77-83.

13. Akhmadiyev A. K., Ekzaryan V. N. Rehabilitation of the natural environment as the structural element of ecological security. MIAB. Mining Inf. Anal. Bull. 2020;(2):112-120. [In Russ]. DOI: 10.25018/0236-1493-2020-2-0-112-120.

14. Perring M. P., Standish R. J., Price J. N., Craig M. D., Erickson T. E., Ruthrof K. X., Whiteley A. S., Valentine L. E., Hobbs R. J. Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere. 2015. Vol. 6. No 8. Pp. 1—25. DOI: 10.1890/ES1500121.1.

15. Lortie C. J., Filazzola A., Kelsey R., Hart A. K., Butterfield H. S. Better late than never: a synthesis of strategic land retirement and restoration in California. Ecosphere. 2018. Vol. 9. No 8. Article e02367. DOI: 10.1002/ecs2.2367.

16. Timofeeva S. S. Phytomining: current state and prospects. Zhurnal XXI vek. Tekhnosfernaya bezopasnost'. 2018. Vol. 3, no 3, pp. 112—128. [In Russ].

17. Krupina M. V., Lyubimov M. V., Stukolova I. V. Accumulation's patterns of heavy metals in sea grass of the species Zostera marina L. Voprosy sovremennoy al'gologii. 2016, no 1 (11). [In Russ]. https://www.algology.ru/682.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.