Determination of dynamic and static elasticity modules of granite samples

The paper discusses the elastic properties of rock specimens studied by static and dynamic methods; the static and dynamic elastic moduli are comparatively analyzed. We examined two sets of differently fractured specimens of Voronezh granite sampled at different depths (up to 400 m). Two sets of ten specimens each were selected on the basis of total core recovery, solid core recovery, and rock quality designation. The static modulus of elasticity was determined from stress and deformation measurements made with a TP-1—1500 press and a tensometric complex (with integrated software), respectively. The dynamic modulus of elasticity was determined from the measured elastic wave velocities and densities of the specimens. Correlation and regression analysis was performed to determine the relationship between the static and dynamic modulus of elasticity for two sets of specimens. As far as the set of fractured granite specimens is concerned, it is found that less fractured granite specimens are characterized by more strong correlation between the elastic moduli, other specimens show a moderate correlation. It is also found that the relationship between the dynamic and static moduli has a linear character for the whole series of specimens; on average, the dynamic modulus of elasticity is 2.11 times larger than the static one, which does not differ significantly from two separate sets.

Keywords: ultimate strength, static modulus of elasticity, dynamic modulus of elasticity, Poisson’s ratio, correlation, cores, selections, granites.
For citation:

Shibaev I. A., Belov O. D., Sas I. E. Determination of dynamic and static elasticity modules of granite samples. MIAB. Mining Inf. Anal. Bull. 2021;(4-1):5—15. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_5.

Acknowledgements:

The reported study was funded by RFBR, project number 19-35-90063.

Issue number: 4
Year: 2021
Page number: 5-15
ISBN: 0236-1493
UDK: 622.023.25+620.179.16
DOI: 10.25018/0236_1493_2021_41_0_5
Article receipt date: 20.01.2021
Date of review receipt: 26.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

Shibaev I. A.1, PhD-student, mrdfyz@mail.ru;
Belov O. D.1, engineer;
Sas I. E.1, engineer;
1 National Research Technological University “MISiS” Mining Institute, Moscow, Russia.

 

For contacts:
Bibliography:

1. GOST 21153.2—84. Porody gornye. Metody opredeleniya predela prochnosti pri odnoosnom szhatii (s Izmeneniyami N 1, 2,). Mezhgosudarstvennyj standart porody gornye ot 19.06.84 (S izm. i dop. Postanovleniem Gosudarstvennogo komiteta SSSR po Upravleniyu kachestvom produkcii i standartam ot 01.07.1986). [GOST 21153.2—84. Mountain rocks. Methods for determining the ultimate strength in uniaxial compression (with amendments N 1, 2)]. Decree of the USSR State Committee for Product Quality and Standards Management dated 01.07.1986. [In Russ].

2. GOST 28985—91. Porody gornye. Metod opredeleniya deformacionnyh harakteristik pri odnoosnom szhatii. Mezhgosudarstvennyj standart porody gornye ot 24.04.91 (S izm. i dop. Postanovleniem Gosudarstvennogo komiteta SSSR po Upravleniyu kachestvom produkcii i standartam ot 01.07.1992). [GOST 28985—91. Mountain rocks. Method for determination of deformation characteristics under uniaxial compression]. Interstate rock rock standard dated 04.24.91 (As amended and supplemented by the Decree of the USSR State Committee for Product Quality Management and Standards dated 01.07.1992). [In Russ].

3. GOST 30629—2011. Mezhgosudarstvennyj standart. Materialy i izdeliya oblicovochnye iz gornyh porod. Metody ispytanij. Mezhgosudarstvennoj nauchno-tekhnicheskoj komissiej po standartizacii, tekhnicheskomu normirovaniyu i ocenke sootvetstviya v stroitel’stve ot 8.12.2011. [GOST 30629—2011. Interstate standard. Facing materials and products from rocks. Test methods]. Interstate Scientific and Technical Commission for Standardization, Technical Regulation and Conformity Assessment in Construction dated 8.12.2011. [In Russ].

4. Karabutov A. A. Podymova N. B. Cherepetskaya E. B. Measurement of the dependence of the local Young’s modulus on the porosity of isotropic composite materials by the pulsed acoustic method using a laser ultrasound source. Prikladnaya mekhanika i tekhnicheskaya fizika. 2013, no. 3 (54), pp. 181—190. [In Russ].

5. Karabutov A. A. Podymova N. B. Cherepetskaya E. B. Determination of uniaxial stresses in steel structures by the laser-ultrasonic method. Journal of Applied Mechanics and Technical Physics, 2017, Vol. 58, pp. 503—510.

6. Bychkov A. S. Cherepetskaya E. B. Karabutov A. A. Makarov V. A. Improvement of Image Spatial Resolution in Optoacoustic Tomography with the Use of a Confocal Array. Acoustical Physics, 2018, Vol. 64, pp. 77—82.

7. Fjaer E. Static and dynamic moduli of weak sandstones. The 37th U. S. Symposium on Rock Mechanics (USRMS), 1999.

8. SP 11—105—97 Inzhenerno-geologicheskie izyskaniya dlya stroitel’stva. CHast’ I. Obshchie pravila proizvodstva rabot. Departamentom razvitiya nauchno-tekhnicheskoj politiki i proektno-izyskatel’skih rabot Gosstroya Rossii ot 01.03.1998. [SP 11-10597 Engineering and geological surveys for construction. Part I. General rules of work]. Department for the development of scientific and technical policy and design and survey work of the Gosstroy of Russia dated 01.03.1998. [In Russ].

9. Martınez-Martınez J. Benavente D. Garcıa-del-Cura M. A. Comparison of the static and dynamic elastic modulus in carbonate rocks. Bulletin of Engineering Geology and the Environment, 2012, Vol. 71, pp. 263—268.

10. Frolova Y. V. Patrusheva N. A. Comparative analysis of static and dynamic moduli of elasticity of granites and gneisses of the Aldan shield. Sergeevskie chteniya, inzhenernaya geologiya i geoekologiya.fundamental’nye problemy i prikladnye zadachi. 2016, pp.100—105. [In Russ].

11. Shibaev I. A. Sas I. E. Cherepetskaya E. B. Bagryancev D. M. Justification of Possible Simplifications in Evaluating the Soil-Substrate Interaction. MIAB. Mining Inf. Anal. Bull. 2018, no. 9, pp. 152—157. [In Russ].

12. Wang Y. Han D.-H. Zhao L. Mitra A. Aldin S. An experimental investigation of the anisotropic dynamic and static properties of eagle Ford shales. SPE/AAPG/SEG Unconventional Resources Technology Conference 2019, 2019.

13. Kravcov A. N. Svoboda P. Pospichal V. Morozov D. V. Ivanov P. N. Limit depth of rock mine shafts for underground shelters. Key Engineering Material, 2017, Vol. 755, pp. 198—201.

14. Chen Y. Zuo J. Guo B. Guo W. Effect of cyclic loading on mechanical and ultrasonic properties of granite from Maluanshan Tunnel. Bulletin of Engineering Geology and the Environment. 2020, Vol. 79 (1), pp. 299—311.

15. Tang J. Fang B. Lan Y. Analysis of rock nonlinear deformation behavior with loading and unloading hysteresis effect. Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2014, Vol. 49 (6), pp. 1131—1137.

16. Marshall N. Mor F. Rukovodstvo po geomekhanicheskomu dokumentirovaniyu kerna. [Core Geotechnical Documentation Guide], 2009, 46 p. [In Russ].

17. Bychkov A. S. Zarubin V. P. Karabutov A. A. Simonova V. A. Cherepetskaya E. B. On the use of an optoacoustic and laser ultrasonic imaging system for assessing peripheral intravenous access. Photoacoustics, 2017, Vol. 5, pp. 10—16.

18. Bychkov A. Simonova V. Zarubin V. Cherepetskaya E. Karabutov A. The progress in photoacoustic and laser ultrasonic tomographic imaging for biomedicine and industry: A review. Applied Sciences (Switzerland), 2018, Vol. 8, Issue 10, no. 1931.

19. Shibaev I. A. Vinnikov V. A. Stepanov G. D. Determining elastic properties of sedimentary strata in terms of limestone samples by laser ultrasonics. MIAB. Mining Inf. Anal. Bull. 2020;(7):125—134. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-125-134.

20. Zarubin V. Bychkov A. Simonova V. Zhigarkov V. Karabutov A. Cherepetskaya E. A refraction-corrected tomographic algorithm for immersion laser-ultrasonic imaging of solids with piecewise linear surface profile. Applied Physics Letters, 2018, Vol. 112, no. 214102, DOI: 10.1063/1.5030586.

21. Grigoriev, K. S. Kuznetsov, N.Yu. Cherepetskaya, E. B. Makarov, V. A. Second harmonic generation in isotropic chiral medium with nonlocality of nonlinear optical response by heterogeneously polarized pulsed beams. Optics Express, 2017, Vol 25, Issue 6, pp. 6253—6262. DOI: 10.1364/OE.25.006253.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.