Determination of poro-perm properties of fractured-porous geomaterials based on non-steady filtration test data through inverse problem-solving within a dual-porosity medium model

A two-stage method is developed to validate geomechanical–hydrodynamic models of dual porosity and dual permeability (DPDP) media. The models aim to describe mass transfer processes in fractured-porous rock mass under quasi-static stresses. The method is theoretically substantiated and tested on a constructed universal laboratory bench using specimens made of artificial geomaterial by an original technology. At the first stage, the mass transfer coefficient, as well as the permeability of the matrix and fracture space are determined based on the results of deformation and stationary filtration tests of the specimens. A DPDP model of non-stationary filtration is developed and implemented using a finite-difference method, describing laboratory experiments. These experiments were carried out on block parallelepiped samples of a regularly layered structure under variable external stress , and consisted in recording the change in the pressure P(t,) over time in a reference volume under various outlet conditions. At the second stage, the compressibility of the matrix and the fracture space were determined based on the solution of inverse coefficient problems by the input data P(t,) within the DPDP model. The least square method reveals that the dependence of the fracture space compressibility on stresses is well approximated by a decreasing exponential function.

Keywords: lab test, artificial geomaterial, dual porosity and dual permeability model, nonsteady filtration, inverse problem, fractured-porous medium, compressibility, stress.
For citation:

Nazarov L. A., Golikov N. A., Skulkin A. A., Nazarova L. A. Determination of poro-perm properties of fractured-porous geomaterials based on non-steady filtration test data through inverse problem-solving within a dual-porosity medium model. MIAB. Mining Inf. Anal. Bull. 2024;(12):5-17. [In Russ]. DOI: 10.25018/0236_1493_2024_12_0_5.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No 23-27-00339.

Issue number: 12
Year: 2024
Page number: 5-17
ISBN: 0236-1493
UDK: 622.453
DOI: 10.25018/0236_1493_2024_12_0_5
Article receipt date: 21.08.2024
Date of review receipt: 22.09.2024
Date of the editorial board′s decision on the article′s publishing: 10.11.2024
About authors:

L.A. Nazarov1, Dr. Sci. (Phys. Mathem.), Chief Researcher, e-mail: mining1957@mail.ru, ORCID ID: 0000-0002-9857-295X,
N.A. Golikov1, Cand. Sci. (Eng.), Senior Researcher, e-mail: golikovna@ipgg.sbras.ru, ORCID ID: 0000-0001-8101-230X,
A.A. Skulkin1, Junior Researcher, e-mail: chuptt@yandex.ru,
L.A. Nazarova, Dr. Sci. (Phys. Mathem.), Chief Researcher, Chinakal Institute of Mining of the Siberian Branch of the Russian Academy of Sciences, 630091, Novosibirsk, Russia, e-mail: larisa.a.nazarova@mail.ru, ORCID ID: 0000-0002-3712-2939,
1 Novosibirsk State University, 630090, Novosibirsk, Russia.

 

For contacts:

L.A. Nazarov, e-mail: mining1957@mail.ru.

Bibliography:

1. Malyshev Yu. N., Airuni A. T. Kompleksnaya degazatsiya ugol'nykh shakht [Complex degassing of coal mines], Moscow, Izd-vo AGN, 1999, 327 p.

2. Mishra A., Govindarajan S. K. Methane gas production from a coal bed methane reservoir: An overview. Journal of Oil, Gas and Coal Engineering. 2020, vol. 5, no. 1, pp. 39—46.

3. Ruban A. D., Artem'ev V. B., Zaburdyaev V. S., Zakharov V. N., Loginov A. K., Yutyaev E. P. Podgotovka i razrabotka vysokogazonosnykh ugol'nykh plastov [Preparation and development of highgas-bearing coal seams], Moscow, Izd-vo «Gornaya kniga», 2010, 500 p.

4. Benson S. M., Cole D. R. CO2 sequestration in deep sedimentary formations. Elements. 2008, vol. 4, no. 5, pp. 325—332. DOI: 10.2113/gselements.4.5.325.

5. Pashin J. C. Geologic considerations for CO2 storage in coal. Vishal V., Singh T. N. (Eds.), Geologic carbon sequestration: Understanding reservoir behavior. Springer Cham, 2016, pp. 137—159. DOI: 10.1007/978-3-319-27019-7.

6. Whittaker C. Fundamentals of production logging. Schlumberger Digital Marketing, Houston, Texas, USA, 2013, 201 p.

7. van Golf-Racht T. Fundamentals of fractured reservoir engineering. Elsevier, 1982, 732 p.

8. Zaburdyaev V. S., Malinnikova O. N., Trofimov V. A. Metanoobil'nye shakhty: dobycha uglya, gazovydelenie, metanovaya opasnost' [Methane-rich collieries: coal mining, gas emission, methane hazard], Kaluga, OOO «Manuskript», 2020, 334 p.

9. Nazarov L. A., Golikov N. A., Skulkin A. A., Nazarova L. A. Method of experimental determination of deformation and flow characteristics in rocks with regular block structure. MIAB. Mining Inf. Anal. Bull. 2023, no. 11, pp. 70—81. [In Russ]. DOI: 10.25018/0236_1493_2023_11_0_70.

10. Nazarova L. A., Nazarov L. A., Polevshchikov G. Ya., Rodin R. I. Inverse problem solution for estimating gas content and gas diffusion coefficient of coal. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2012, no. 5, pp. 15—23. [In Russ]. DOI: 10.1134/S1062739148050024.

11. Ahmed T. Reservoir engineering handbook. Elsevier, 4th ed., 2006, 1376 p.

12. Gaivoronsky I. N., Zamakhaev V. S., Leonenko G. N. Kollektory nefti i gaza Zapadnoy Sibiri. Ikh vskrytie i oprobovanie [Oil and gas reservoirs of Western Siberia. Opening and testing them], Moscow, Geoinformmark, 2000, 364 p.

13. Zhemchuzhnikov Yu. A., Ginzburg A. I. Osnovy petrologii ugley [Fundamentals of coal petrology], Moscow, Izd-vo Akademii nauk SSSR, 1960, 179 p.

14. Barenblatt G. I., Zheltov Yu. P., Kochina I. N. On the basic concepts of the theory of filtration of homogeneous fluids in fractured rocks. Journal of Applied Mathematics and Mechanics. 1960, vol. XXIV, no. 5, pp. 58—73. [In Russ].

15. Ewing R., Efendiev Y., Ginting V., Wang H. Upscaling of transport equations for multiphase and multicomponent flows. Domain decomposition methods in science and engineering XVII. Conference proceedings: Lecture notes in computational science and engineering. 2008, vol. 60, pp. 193—

200. DOI: 10.1007/978-3-540-75199-1_20.

16. Wu Y.-S., Yuan D., Kang Z. Fakcharoenphol P. A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs. Journal of Petroleum Science and Engineering. 2011, vol. 78, no. 1, pp. 13—22. DOI: 10.1016/j.petrol.2011.05.004.

17. Xiao Q., Wang H., Yang Y., Li Z., Jiang B., Li J., Xiang Z. Triple-porosity and dual-permeability productivity prediction model of CBM wells considering complex flow regimes. Frontiers in Earth Science. 2022, vol. 10. DOI: 10.3389/feart.2022.906276.

18. Sokolov A. F., Rassokhin S. G., Troitsky V. M., Mizin A. V., Vankov V. P., Alemanov A. Ye., Rassokhin A. S., Monakhova O. M., Malyshev S. V. Universal automated complex for special core studies, modeling of filtration processes and methods of influencing porous media in thermobaric conditions of formation. Vesti gazovoy nauki. 2021, no. 2 (47), pp. 171—176. [In Russ].

19. Zhukov V. S., Kuzmin Y. O. Experimental evaluation of compressibility coefficients for fractures and intergranular pores of an oil and gas reservoir. Journal of Mining Institute. 2021, vol. 251, pp. 658—666. [In Russ].

20. Berre I., Doster F., Keilegavlen E. Flow in fractured porous media: a review of conceptual models and discretization approaches. Transport in Porous Media. 2019, vol. 130, pp. 215—236. DOI: 10.1007/s11242-018-1171-6.

21. Wu Y.-S. Multiphase fluid flow in porous and fractured reservoirs. Elsevier, Amsterdam, 2016, 418 p.

22. Nazarova L. A., Nazarov L. A., Golikov N. A., Skulkin A. A. Stress-permeability dependence in geomaterials from laboratory testing of cylindrical specimens with central hole. Journal of Mining Science. 2019, vol. 78, no. 5, pp. 708–714. [In Russ]. DOI: 10.15372/FTPRPI20190503.

23. Barenblatt G. I., Entov V. M., Ryzhik V. M. Theories of fluid flows through natural rocks. Kluwer Academic Publishers, 1990, 395 p.

24. Samarsky A. A. Teoriya raznostnykh skhem [Theory of difference schemes], Moscow, Nauka, 1989, 616 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.