To the issue of determining energy parameters of vehicle electromagnetic shock absorber

The influence of vehicle parameters and external operating conditions such as roadway quality, vehicle type and its weight and size shall be taken into account when designing an electromagnetic shock absorber. To determine energy parameters on various roadway sections, a mathematical simulation model of the vehicle was developed in the MATLAB Simulink programming environment. A number of experiments were carried out using data obtained from a three-dimensional scan of a real roadway section, within the requirements of modern driving cycles. The simulation results made it possible to determine the basic design characteristics of the electromagnetic shock absorber. Dependencies of shock absorber operation parameters on vehicle weight and speed of its movement are obtained. The energy efficiency of the system was determined using a vehicle on roads having a different road surface evenness index.

Keywords: electromagnetic shock absorber, simulation modeling, international road surface evenness index, energy efficiency, energy recovery, active vehicle suspension.
For citation:

Bakholdin P. A., Bakholdin D. A., Chernov A. A., Singizin I. I. To the issue of determining energy parameters of vehicle electromagnetic shock absorber. MIAB. Mining Inf. Anal. Bull. 2022;(12-2):47—57. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_47.

Issue number: 12
Year: 2022
Page number: 47-57
ISBN: 0236-1493
UDK: 621.793.71
DOI: 10.25018/0236_1493_2022_122_0_47
Article receipt date: 24.01.2022
Date of review receipt: 27.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

Bakholdin P. A.1, PhD student, e-mail:, ORCID: 00000001-5232-8911;
Bakholdin D. А.1, PhD student, e-mail:, ORCID: 0000−00028722−34201;
Chernov A. A.1, junior researcher, e-mail:;
Singizin I. I.1, PhD student, e-mail:;
1 Novosibirsk State Technical University.


For contacts:

Bakholdin P. A., e-mail:


1. Causemann P. Moderne Schwingungsd¨ampfung. Automobiltechnische Zeitung. 2003, vol. 105, pp.1072–1079.

2. Domorozov A. N., Nguyen Van Nian. Analysis of methods for diagnosing the technical condition of suspension systems of automatic telephone exchanges on modern vibration stands. Bulletin of the Irkutsk State Technical University. 2010, no. 5(45), pp.131–134. [In Russ].

3. Ryazantsev V. I., Alsalameh Balsam. Stabilization of the vertical reaction of the road to the wheel when driving along a periodic road profile. Izvestiya MSTU “MAMI” (Scientific peer-reviewed journal). 2016, no. 4(30). pp. 57–65. [In Russ].

4. Yoshimura T., Matumura S., Kurimoto M., Hino J. Active suspension system of onewheel car models using the sliding mode control with VSS observer. International Journal of Vehicle Autonomous Systems. 2002, vol. 1(1), pp. 133–152.

5. Ponomarenko M. R., Kutepov Yu. I., Volkov M. A., Grinyuk A. P. Space methods as part of complex deformation monitoring of the earth’s surface of a mining enterprise. MIAB. Mining Inf. Anal. Bull. 2020, no. 12, pp. 103–113. DOI: 10.25018/0236-1493-2020-12-0103−113. [In Russ].

6. Kuchinskaya G., Stavskaya M. Application of terrestrial laser scanning in modern conditions. MIAB. Mining Inf. Anal. Bull. 2021, no. 1, pp. 160–169. DOI: 10.25018/02361493-2021-1-0−160−169. [In Russ].

7. Mislibaev I. T., Makhmudov A. M., Makhmudov Sh. A. Theoretical generalization of operating modes and modeling of operational performance of excavators. MIAB. Mining Inf. Anal. Bull. 2021, no. 1, pp. 102–110. DOI: 10.25018/0236-1493-2021-1-0-102−110. [In Russ].

8. Brigadin I. V., Vozgrin R. A., Krasnov S. A., Toropov A. Yu. Model of vehicle movement in quarries on an unprofiled roadway. MIAB. Mining Inf. Anal. Bull. 2018, no. 2, pp. 168–174. DOI: 10.25018/0236-1493-2018-2-0−168−174.

9. Khazin M. L., Apakashev R. A. Mining dump trucks running on hydrogen fuel. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 47–59. DOI: 10.25018/0236_1493_2022_1_0_47. [In Russ].

10. Kulikov K. I., Schurov N. I. Vehicle energy consumption as factor of combined power plant parameters’ definition. Journal of Physics: Conference Series. International Conference on Information Technology in Business and Industry (ITBI 2020), Novosibirsk. 2020, vol. 1661, art. 012146 (6 p.) DOI: 10.1088/1742−6596/1661/1/012146.

11. Sarychev D. S. Mobile laser scanning. CAD and GIS of highways. 2013, no. 1(1), pp. 36–41. [In Russ].

12. Shchurov N. I., Bakholdin P. A. Active electromagnetic suspension of a vehicle. Actual problems of electronic instrument engineering (APEIE–2018). Tr. 14 int. sci.-tech. Conf., in 8 vols. Novosibirsk, Publishing house of NSTU. 2018, vol. 1, part 5, pp. 399–401. [In Russ]. DOI: 10.1109/APEIE.2018.8545214.

13. Bakholdin P. A., Shchurov N. I., Rozhkova M. V. Determination of the recuperation energy of the electromagnetic suspension of an autonomous vehicle. Actual problems of electronic instrument engineering (APEIE–2018) : Tr. 14 int. sci.-tech. Conf., in 8 vols. Novosibirsk, Publishing house of NGTU. 2018, vol. 1, part 5, pp. 48–51. [In Russ]. DOI: 10.1109/APEIE.2018.8546226.

14. Shchurov N. I., Bakholdin P. A., Bakholdin D. A. Energy parameters of the vehicle electromagnetic shock absorber. Proceedings of the Russian higher school Academy of sciences. 2021, no. 2 (51), pp. 53–62. [In Russ]. DOI: 10.17212/ 1727-2769-2021-2-53−62.

15. Zhang P., Deng Z., Liang L., Wang L., Ke Z., Lv C., Li Z., Wu X., Vibration Suppression of HTS Maglev System Based on Negative Resistance Electromagnetic Shunt Damper. IEEE Transactions on Applied Superconductivity. 2022, vol. 32, no. 6, pp. 1–5, art 3601005. DOI: 10.1109/TASC.2022.3154330.

16. Zhang R. and Han C. Research on the Principle of Arm Torsion Electromagnetic Active Suspensison. 6th International Conference on Control and Robotics Engineer ing (ICCRE). 2021, pp. 96–100. DOI: 10.1109/ICCRE51898.2021.9435726.

17. Sun X., Wu M., Yin C. and Wang S. Model Predictive Thrust Force Control for Linear Motor Actuator used in Active Suspension. IEEE Transactions on Energy Conversion. 2021, vol. 36, no. 4, pp. 3063–3072. DOI: 10.1109/TEC.2021.3069843.

18. Kopylov S., Chen Z. and Abdelkareem M. A. A. Implementation of an Electromagnetic Regenerative Tuned Mass Damper in a Vehicle Suspension System. IEEE Access. 2020, vol. 8, pp. 110153–110163. DOI: 10.1109/ACCESS.2020.3002275.

19. Meng X., Wang R., Ding R. and Chen L. Optimal Design and Experimental Research on a New Hybrid Electromagnetic Actuator for Vehicles. IEEE Access. 2020, vol. 8, pp. 95768–95778. DOI: 10.1109/ACCESS.2019.2962529.

20. Stotckaia A. D., Dubrovin A. E. and Belskii G. V. Development of an Electromagnetic Suspension Measuring System. III International Conference on Control in Technical Systems (CTS). 2019, pp. 253–256. DOI: 10.1109/CTS48763.2019.8973358.

21. Bakholdin D. A., Biryukov V. V., Tolstobrova L. I. Determining parameters of electric power unit for light aircraft. Advances in Engineering Research.: Actual issues of mechanical engineering, AIME 2018, Novosibirsk. 2018, vol. 157, pp. 65–69. DOI: 10.2991/ aime-18.2018.13.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.