Bibliography: 1. Holmberga K., Kivikytö-Reponena P., Härkisaarib P., Valtonenb K., Erdemir A. Global energy consumption due to friction and wear in the mining industry. Tribology International. 2017, vol. 115, pp. 116−139. DOI: 10.1016/j.triboint.2017.05.010.
2. Taylor L., Skuse D., Blackburn S., Greenwood R. Stirred media mills in the mining industry: Material grindability, energy-size relationships, and operating conditions. Powder technology. 2020, vol. 369, pp. 1−16. DOI: 10.1016/j.powtec.2020.04.057.
3. Dogra M., Sharma V. S., Dureja J. S., Gill S. S. Environment-friendly technological advancements to enhance the sustainability in surface grinding. A review. Journal of cleaner Production. 2018, vol. 197, pp. 218−231. DOI: 10.1016/j.jclepro.2018.05.280
4. Korchevsky A. N., Nazimko E. I., Serafimova L. I., Naumenko V. G. Preparatory processes in the enrichment of minerals. Crushing, grinding, screening and classification. Donetsk: DonNTU, 2017. 180 p. [In Russ].
5. Golik V. I. Investigation of the influence of the properties of solids on the energy of grinding in mills. MIAB. Mining Inf. Anal. Bull. 2021, no. 10, pp. 112–122. [In Russ]. DOI: 10.25018/0236_1493_2021_10_0_112.
6. Patel D. K., Goyal D., Pabla B. S. Optimization of parameters in cylindrical and surface grinding for improved surface finish. Royal Society open science. 2018, vol. 5, no. 5. DOI: 10.1098/rsos.171906.
7. Sharapov R. R. Determination of the boundary conditions of the grinding load in ball mills. IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2018, vol. 307, no. 1, p. 012047. DOI: 10.1088/1757−899X/307/1/012047.
8. Bardovsky A. D., Valeeva L. M., Basyrov I. I. A plant with a rotary jet grinder to produce small fractions of mineral raw material. IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2020, vol. 971, no. 5, p. 052004. DOI: 10.1088/1757−899X/971/5/052004
9. Gorlov I. V., Mitusov P. E., Belyaev A. M. Analysis of the grinding process of weak rocks. Ugol. 2022, no. 6 (1155), pp. 44−47. [In Russ]. DOI: http://dx.doi. org/10.18796/0041−5790−2022−6-44−47.
10. Matveev A. I., Vinokurov V. R. Design development of a new combined-action rock shredder. Prirodnye resursy Arktiki i Subarktiki. 2020, vol. 25, no. 3, pp. 63−73. [In Russ]. DOI: 10.31242/2618−9712−2020−25−3-6.
11. Vaisberg L. A., Korovnikov A. N., Trofimov V. A. Modernization of technological screening cycles based on innovative equipment (to the 100th anniversary of the Institute “Mechanobr”). Gorny`j zhurnal. 2017, no 1, pp. 11−17. DOI: 10.17580/gzh.2017.01.02 [In Russ.]
12. Vaisberg L. A., Safronov A. N. O application of vibrational disintegration for processing of various materials. Obogashhenie rud. 2018, no. 1, pp. 3−11. [In Russ]. DOI: 10.17580/or.2018.01.01.
13. Bilenko L. F., Dyachkova T. F. Ways to improve the technology of crushing and crushing ores on the example of the Theological aluminum plant. Obogashhenie rud. 2007, no. 4, pp. 3−7. [In Russ].
14. Hopunov E. A. Analysis of the causes of low energy efficiency of the processes of destruction of mineral raw materials. Sovremennaya texnika i texnologii. 2014, no. 10, pp. 42−51. [In Russ].
15. Afanasyev A. I., Pankov S. A., Potapov V. Ya., Fefelov M. I. Experimental studies of impact destruction of poor sulfide ores. Sovremenny`e problemy` nauki i obrazovaniya. 2013, no. 6, pp. 159−159. [In Russ].
16. Palaniandy S., Halomoan R., Ishikawa H. TowerMill circuit performance in the magnetite grinding circuit–The multi-component approach. Minerals Engineering. 2019, vol. 133, pp. 10−18. DOI: 10.1016/j.mineng.2018.12.019.
17. Botha S., Le Roux J. D., Craig I. K. Hybrid non-linear model predictive control of a run-of-mine ore grinding mill circuit. Minerals Engineering. 2018, vol. 123, pp. 49−62. DOI: 10.1016/j.mineng.2018.04.016.
18. Zubov V. V., Simisinov D. I., Akhlyustina N. V., Khazin M. L., Davydov S. Ya. Determination of the parameters of a counterblow grinder. Refractories and Industrial Ceramics. 2018, vol. 58, no. 5, pp. 521–524. https://doi.org/10.1007/s11148−018−0136−1.
19. Lyaptsev S. A., Akhlyustina N. V. Modeling of particle motion in a shredder. Izvestiya vuzov. Gornyj zhurnal. 2007, no. 8, pp. 107−110. [In Russ].
20. Akhlyustina N. V., Zubov V. V. Air flow control in the channels of the rotor of the oncoming impact chopper. Izvestiya vuzov. Gornyj zhurnal. 2015, no. 3, pp. 126−132. [In Russ].
21. Khalkechev R. K. Multifractal model of crack propagation in polycrystals under shock loads. MIAB. Mining Inf. Anal. Bull. 2012, no. 3−2, pp. 17−23. [In Russ].
22. Matveev A. I., Vinokurov V. R. Experimental studies on the intensification of grinding processes in a stepped centrifugal mill. Prirodnye resursy Arktiki i Subarktiki. 2019, vol. 24, no. 2, pp. 56−63. [In Russ]. DOI: 10.31242/2618−9712−2019−24−2-5.
23. Savinykh P. A., Isupov A. Yu., Ivanov I. I. Determination of the main kinematic parameters of particle motion in the channel of the distribution bowl of a centrifugal rotary shredder. Vestnik NGIEI. 2020, no. 7 (110), pp. 37−46. [In Russ]. DOI: 10.24411/2227−9407−2020−10062.
24. Batyrov V. I., Apkhudov T. M. Substantiation of the main design and technological parameters of a two-roll rotary shredder. Izvestiya Kabardino-Balkarskogo gosudarstvennogo agrarnogo universiteta im. V. M. Kokova. 2022, no. 4 (38), pp. 87−97. [In Russ]. DOI: 10.55196/2411−3492−2022−4-38−87−97.
25. Zhabin A. B., Lavit I. M., Polyakov A. V., Kerimov Z. E. Mathematical model of rock destruction by percussion instrument. MIAB. Mining Inf. Anal. Bull. 2020, no. 11, pp. 140–150. [In Russ]. DOI: 10.25018/0236−14932020−11−0-140−150.
26. Bragin V. G., Volkov E. B., Kazakov Yu. M. Theoretical mechanics. Yekaterinburg, UGGU, 2018, 249 p. [In Russ].