Numerical modeling and laboratory testing of reservoir properties of coal

The article offers a brief analytical review of the methods for recording of hydrodynamic parameters of high-head fluid flows which feature pulsewise propagation in fractured porous coal seams. The modern models of physical processes in gas flow in rock samples are discussed. Approaches to interpretation of percolation parameters for the assessment of coal permeability and stimulation of gas recovery are described. The developed numerical model of gas flow in a cylindrical rock specimen, in linear direction and at the pressure gradient at the specimen faces is discussed. The generalized layout and specifications of a bench tester for reservoir properties of coal sampled in roadways of operating mines are presented. The comparative analysis data on coal reservoir properties determined in certain numerical experiments at different gas flow rates and different pressure gradients at sample outlets and in laboratory tests of coal cores show a satisfactory agreement. It is methodologically feasible to use jointly numerical modeling and lab-scale testing of coal reservoir properties to enhance reliability of the estimates. The research findings can be used to improve activities aimed at stimulation of coal seam gas drainage efficiency and mining safety.

Keywords: mine methane, numerical model, fluid, permeability, coal core, coal seam gas drainage, reservoir properties, percolation.
For citation:

Tailakov O. V., Makeev M. P., Utkaev E. A. Numerical modeling and laboratory testing of reservoir properties of coal. MIAB. Mining Inf. Anal. Bull. 2022;(9):99-108. [In Russ]. DOI: 10.25018/0236_1493_2022_9_0_99.

Acknowledgements:

The study was supported by the Russian Foundation for Basic Research, Project No. 20-45-420022 р_а.

Issue number: 9
Year: 2022
Page number: 99-108
ISBN: 0236-1493
UDK: 622.453
DOI: 10.25018/0236_1493_2022_9_0_99
Article receipt date: 16.05.2022
Date of review receipt: 27.07.2022
Date of the editorial board′s decision on the article′s publishing: 10.08.2022
About authors:

O.V. Tailakov1, Dr. Sci. (Eng.), Professor, Chief Researcher, e-mail: oleg2579@gmail.com, ORCID ID: 0000-0001-5046-0476
M.P. Makeev1, Cand. Sci. (Eng.), Senior Researcher, e-mail: mmakeev@uglemetan.ru, ORCID ID: 0000-0002-9592-3646,
E.A. Utkaev1, Cand. Sci. (Eng.), Senior Researcher, e-mail: utkaev@uglemetan.ru,
1 Federal Research Center of Coal and Coal Chemistry, Siberian Branch of Russian Academy of Sciences, 650065, Kemerovo, Russia

 

For contacts:

M.P. Makeev, e-mail: mmakeev@uglemetan.ru.

Bibliography:

1. Zaburdyaev V. S. Methane emission from the broken-down coal in the working face. Occupational Safety in Industry. 2019, no. 11, pp. 13—17. [In Russ]. DOI: 10.24000/0409-29612019-11-13-17.

2. Wang Guofa, Ren Huaiwei, Pang Yihui, Cao Xiangang, Zhao Guorui, Chen Hongyue, Du Yibo, Mao Shanjun, Xu Yajun, Ren Shihua, Cheng Jianyuan, Liu Siping Research and engineering progress of intelligent coal mine technical system in early stages. Coal Science and Technology (Peking). 2020, vol. 48, no 7, pp. 1—27. DOI: 10.13199/j.cnki.cst.2020.07.001.

3. Melekhin E. S., Kuzina E. S. Stimulation of mining processes of high-gas coal seams. Ugol’. 2019, no. 6, pp. 46—51. [In Russ]. DOI: 10.18796/0041-5790-2019-46-50.

4. Soloviev V. B., Perepelytnik A. N. The use of solid oxidants for the discharge and degassing of coal seams. MIAB. Mining Inf. Anal. Bull. 2019, no. S6, pp. 267—277. [In Russ]. DOI: 10.25018/0236-1493-2019-4-6-267-277.

5. Malashkina V. A. Efficiency boosting feature of intensification of coal mine in degasification. MIAB. Mining Inf. Anal. Bull. 2019, no. 9, pp. 131—137. [In Russ]. DOI: 10.25018/02361493-2019-09-0-131-137.

6. Klishin V. I., Tailakov O. V., Opruk G. Yu., Makeev M. P., Sokolov S. V., Utkaev E. A., Teleguz A. S. Experimental researches of coal seam failure in interval hydraulic fracturing. Fundamental'nye i prikladnye voprosy gornykh nauk. 2019, vol. 6, no. 2, pp. 113—117. [In Russ]. DOI: 10.15372/FPVGN2019060220.

7. Minghua Lin, Baiquan Lin, Wei Yang, Yang Zhao, Zheng Wang In-situ testing method of the permeability coefficient in a coal seam based on the finite volume method and its application. Journal of Natural Gas Science and Engineering. 2022, vol. 97, article 104370. DOI: 10.1016/j. jngse.2021.104370.

8. Isabek T. K., Demin V. F., Shontaev D. S., Malybaev S. K., Shontaev A. D., Aleksandrov A.Yu. Effective technology for drilling advance methane drainage boreholes in outburst-prone coal beds. Ugol’. 2021, no. 6, pp. 11—14. [In Russ]. DOI: 10.18796/0041-5790-2021-6-11-14.

9. Shiryaev S. N., Cherepov A. A., Petrova O. A. Analysis of coal seam permeability around the edges versus stress–strain state of rock mass. MIAB. Mining Inf. Anal. Bull. 2019, no. 9, pp. 62—71. [In Russ]. DOI: 10.25018/0236-1493-2019-09-0-62-71.

10. Bi Caiqin, Hu Zhifang, Tang Dazhen, Tao Shu, Zhang Jiaqiang, Tang Shuling, Huang Huazhou, Tang Yue, Yuan Yuan, Xu Yinbo, Shan Yansheng, Chi Huanpeng, Liu Wei, Zhu Hanyou, Wang Fuguog, Zhou Yang Research progress of coal measure gas and some important scientific problems. Geology in China. 2021, vol. 48, no. 2, pp. 402—423. DOI: 10.12029/gc20210205.

11. Averin A. P., Belousov F. S., Pashichev B. N., Trofimov V. A. Gas flow patterns in rock samples. MIAB. Mining Inf. Anal. Bull. 2021, no. 10, pp. 100—111. [In Russ]. DOI: 10.25018/023614932021100100.

12. Yang Hongwei, Han Bing, Qian Zhiliang Determination principle of residual gas and analysis of influencing factors on the results of laboratory measurement. IOP Conference Series: Earth and Environmental Science. 2020, vol. 526, no. 1, article 012056. DOI: 10.1088/17551315/526/1/012056.

13. Ruban A. D., Zaburdyaev V. S., Zaburdyaev G. S., Matvienko N. G. Metan v shakhtakh i rudnikakh Rossii: prognoz, izvlechenie i ispol'zovanie [Methane in collieries and ore mines in Russia: prediction, extraction and use], Moscow, IPKON RAN, 2006, 312 p.

14. Zakharov V. N., Malinnikova O. N., Trofimov V. A., Filippov Yu. A. Effect of gas content and actual stresses on coalbed permeability. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2016, no. 2, pp. 16—25. [In Russ]. DOI: 10.1134/S1062739116020345.

15. Barenblatt G. I., Entov V. M., Ryzhik V. M. Teoriya nestatsionarnoy fil'tratsii zhidkosti i gaza [The theory of unsteady filtration of liquid and gas], Moscow, Nedra, 1972, 288 p.

16. Gayubov A. T. Non-Darcy flow through porous media. Proceedings of Gubkin University. 2021, no. 1(302), pp. 19—28. [In Russ]. DOI: 10.33285/2073-9028-2021-1(302)-19-28.

17. Tailakov O. V., Utkaev E. A., Zastrelov D. N., Smyslov A. I. Physical modeling of the fluid filtration in coal seam for the assessment of skin-zone radius. MIAB. Mining Inf. Anal. Bull. 2013, special edition 6, pp. 165—169. [In Russ].

18. Tailakov O. V., Utkaev E. A., Makeev M. P., Smyslov A. I. Estimate of coal seams filtration properties in Kuznetsk coal basin of Russia. The International Coalbed Methane Symposium. Tuscaloosa, Alabama, 2003, pp. 298—302.

19. Tailakov O. V., Utkaev E. A., Makeev M. P. Determination of filtration properties of coal seams based on the results of mine measurements. Naukoemkie tekhnologii razrabotki i ispol'zovaniya mineral'nykh resursov. 2020, no. 6, pp. 366—370. [In Russ].

20. Thakur P. Advanced reservoir and production engineering for coal bed methane. Elsevier Inc., 2017, 210 p. DOI: 10.1016/C2014-0-03188-7.

21. Kopytov A. I., Voytov M. D., Tagiev S. M. The experience of methane production in coal fields of China. Bulletin of the Kuzbass State Technical University. 2016, no. 3, pp. 8—14. [In Russ].

22. Fan Yongpeng, Shu Longyong, Huo Zhonggang, Hao Jinwei, Li Yang Numerical simulation of sectional hydraulic reaming for methane extraction from coal seams. Journal of Natural Gas Science and Engineering. 2021, vol. 95, article 104180. DOI: 10.1016/j.jngse.2021.104180.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.