Determining modulus of deformation in surrounding rock mass of Sarbai iron ore deposit using borehole hydraulic jack

The article reports the full-scale test data on modulus of deformation in Sarbai ironore pitwall rock mass using a borehole hydraulic jack. The experimentation was included in the deeper open pit mining project on increasing the pit depth to 700 m. The average moduli of deformation are evaluated for the main rock types in intact rock mass. The experimental results help correlating the rock mass quality and modulus of deformation: the low values of the modulus are typical of the poorer quality rocks mass, while the high value modulus is a feature of the intact rock mass. All measuring points show the lower moduli of deformation (0.5–3.5 GPa) in adjacent rock mass of the pit wall to a depth of 3 m. It is experimentally found that adjacent rock mass contains three zones, as a rule: dislocation, plastic deformation and intact rock mass. The dislocation zone holds fractures and features lower values of the modulus of deformation. The plastic deformation zone is a transitional zone of inelastic deformation and microfracturing. The intact rock mass zone is a zone of elastic deformation without discontinuities and with the higher values of the moduli of deformation.

Keywords: modulus of deformation, borehole hydraulic jack, deformation properties, dislocation zone, plastic deformation, intact rock mass, fracturing, adjacent rock mass.
For citation:

Toksarov V. N., Pospelov D. A., Beltyukov N. L., Udartsev A. A. Determining modulus of deformation in surrounding rock mass of Sarbai iron ore deposit using borehole hydraulic jack. MIAB. Mining Inf. Anal. Bull. 2023;(5):32-42. [In Russ]. DOI: 10.25018/ 0236_1493_2023_5_0_32.


The study was supported by the Ministry of Science and Higher Education of the Russian Federation, Agreement State Registration Number 122012000403-1, and by the Russian Foundation for Basic Research, Grant No. 20-45-596011.

Issue number: 5
Year: 2023
Page number: 32-42
ISBN: 0236-1493
UDK: 622.2
DOI: 10.25018/0236_1493_2023_5_0_32
Article receipt date: 16.01.2023
Date of review receipt: 16.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

V.N. Toksarov1, Cand. Sci. (Eng.), Senior Researcher, e-mail:,
D.A. Pospelov1, Junior Researcher, e-mail:,
N.L. Beltyukov1, Cand. Sci. (Eng.), Researcher, e-mail:,
A.A. Udartsev1, Junior Researcher, e-mail:,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.


For contacts:

D.A. Pospelov, e-mail:


1. Gokceoglu C. Deformation modulus (Em) of rock masses: recent developments. ISRM 3rd Nordic Rock Mechanics Symposium — NRMS. Helsinki, Finland, 2017, pp. 30—38.

2. Torbica S., Lapčević V. A model for estimation of stress-dependent deformation modulus of rock mass. International Journal of Mining and Geo-Engineering. 2019, vol. 53, no. 1. DOI: 10.22059/ijmge.2018.255295.594729.

3. Hoek E., Diederichs M. S. Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences. 2006, vol. 43, no. 2, pp. 203—215. DOI: 10.1016/ j.ijrmms.2005.06.005.

4. Bieniawski Z. T. Engineering classification of rock masses. Trans S Afr Inst Civ Eng. 1973, no. 15, pp. 335—344.

5. Shahverdiloo M. R., Zare S. A new correlation to predict rock mass deformability modulus considering loading level of dilatometer tests. Geotechnical and Geological Engineering. 2021, vol. 39, pp. 5517—5528. DOI: 10.1007/s10706-021-01842-8.

6. Ramamurthy T. A geo-engineering classification for rocks and rock masses. International Journal of Rock Mechanics and Mining Sciences. 2004, vol. 41, no. 1. pp. 89—101. DOI: 10.1016/S1365-1609(03)00078-9.

7. Sonmez H., Nefeslioglu H. A., Gokceoglu C., Kayabasi A. Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sciences. 2006, vol. 43, no. 2, pp. 224—235. DOI: 10.1016/j.ijrmms.2005.06.007.

8. Pappalardo G. Correlation between P-Wave velocity and physical — mechanical properties of intensely jointed dolostones, Peloritani Mounts, NE Sicily. Rock Mechanics and Rock Engineering. 2014, vol. 48, no. 4, pp. 1711—1721. DOI: 10.1007/s00603-014-0607-8.

9. Nemchin N. P., Terentev P. Yu. Semi-empirical formulas for determining the modulus of deformation and modulus recession of rock massiv. MIAB. Mining Inf. Anal. Bull. 2016, no. 11, pp. 305—313. [In Russ].

10. Zhang L., Einstein H. H. Using RQD to estimate the deformation modulus of rock masses. International Journal of Rock Mechanics and Mining Sciences. 2004, vol. 41, no. 2, pp. 337—341. DOI: 10.1016/S1365-1609(03)00100-X.

11. Ghamgosar M., Fahimifar A., Rasouli V. Estimation of rock mass deformation modulus from laboratory experiments in Karun dam. Rock Mechanics in Civil and Environmental Engineering. Proceedings of Eurock-2010. 2010, pp. 805—808.

12. Shen J., Karakus M., Xu C. A comparative study for empirical equations in estimating deformation modulus of rock masses. Tunnelling and Underground Space Technology. 2012, vol. 32, pp. 245—250. DOI: 10.1016/j.tust.2012.07.004.

13. Radovanović S., Ranković V., Anelković V., Divac D., Milivojević N. Development of new models for the estimation of deformation moduli in rock masses based on in situ measurements. Bulletin of Engineering Geology and the Environment. 2017, vol. 77, pp. 1191—1202. DOI: 10.1007/s10064-017-1027-2.

14. Barton N. Application of Q system, index tests to estimate shear strength and deformability of rock masses. Proceedings of International Symposium on Engineering Geology and Underground Construction. Lisbon, 1983, pp. 51—70.

15. Palmstrom A. Recent developments in rock support estimates by the RMi. Journal of Rock Mechanics and Tunnelling Technology. 2000, vol. 6, no. 1, pp. 1—19.

16. Alemdag S., Gurocak Z., Gokceoglu C. A simple regression-based approach to estimate deformation modulus of rock masses. Journal of African Earth Sciences. 2015, vol. 110, pp. 75—80. DOI: 10.1016/j.jafrearsci.2015.06.011.

17. Alemdag S., Gurocak Z., Cevik A., Cabalar A. F., Gokceoglu C. Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming. Engineering Geology. 2016, vol. 203, pp. 70—82. DOI: 10.1016/j.enggeo. 2015.12.002.

18. Mirković U., Babić P., Radovanović S. Establishing new correlations for rock mass deformability determination. 7th International conference «Contemporary Achievements in Civil Engineering», Subotica, Serbia, 2019. pp. 597—604. DOI: 10.14415/konferencijaGFS2019.055.

19. Kuvik M., Kopecký M., Frankovská J. Deformation modulus determination from pressuremeter and dilatometer tests for crystalline rock. IOP Conference Series: Materials Science and Engineering. 2019, vol. 471, no. 4, article 042010. DOI: 10.1088/1757-899X/471/4/042010.

20. Agharazi A., Tannant D., Jafari A. Stress and tunnel geometry effects on deformation modulus derived from plate load tests. 61st Canadian Geotechnical Conference GeoEdmonton'08: A Heritage of Innovation. Canada, Edmonton. 2008, vol. 34, pp. 601—608.

21. Asanov V. A., Toksarov V. N., Beltyukov N. L. Control of the state of rocks of the nearcontour massif in the zone of influence of a geological anomaly. Geomekhanika v gornom dele: Doklady Vserossiyskoy nauchno-tekhnicheskoy konferentsii s mezhdunarodnym uchastiem [Geomechanics in Mining: reports of the All-Russian Scientific and Technical Conference with International Participation], Ekaterinburg, IGD UrO RAN, 2014, pp. 187—194. [In Russ].

22. Il'nitskaya E. I., Teder R. I., Vatolin E. S., Kuntysh M. F. Svoystva gornykh porod i metody ikh opredeleniya [Properties of rocks and methods for their determination], Moscow, Nedra, 1969, 392 p.

23. Meyer T. O., McVey J. R. NX borehole jack modulus determinations in homogeneous, isotropic, elastic materials. Washington, U.S. Bureau of Mines, 1974, 50 p.

24. Heuze F. E. Scale effects in the determination of rock mass strength and deformability. Rock Mechanics. 1980, vol. 12, pp. 167—192.

25. Pankov I. L., Asanov V. A. Study of scale effect mechanism during compression of quasiplastic salt rocks. Mining sciences: fundamental and applied issues. 2015, vol. 2, pp. 273—278. [In Russ].

26. Heuze F. E. Suggested method for estimating the in-situ modulus of deformation of rock using the NX-Borehole Jack. Geotechnical Testing Journal. 1984, vol. 7, no. 4, pp. 205—210.

27. Pospelov D. A., Toksarov V. N., Beltyukov N. L. Method for assessing the modulus of rock deformation in the near-contour massif using a borehole hydraulic jack. Gornoye ekho. 2022, no. 1(86), pp. 51—57. [In Russ]. DOI: 10.7242/echo.2022.1.7.

28. Aitmatov I. T. The concept of the natural stress-strain state of rock masses in mobile mountain folded areas. Napryazhennoe sostoyanie i udaroopasnost' massivov gornykh porod na rudnykh mestorozhdeniyakh Sredney Azii [Stress state and shock hazard of rock masses at ore deposits of Central Asia], Frunze, Ilim, 1983, pp. 3—31.

29. Park S., Kim J-S., Kwon S. Investigation of the development of an excavation damaged zone and its influence on the mechanical behaviors of a blasted tunnel. Geosystem Engineering. 2018, vol. 21, no. 3, pp. 165—181. DOI: 10.1080/12269328.2018.1461139.

30. Palmström A., Singh R. The deformation modulus of rock masses — comparisons between in situ tests and indirect estimates. Tunnelling and Underground Space Technology. 2001, vol. 16, no. 2, pp. 115—131. DOI: 10.1016/S0886-7798(01)00038-4.

31. Dixit M., Dev H., Singh R., Dhawan A. K. In situ deformability characteristics of rock mass by Goodman Jack. ISRM 2003 — Technology roadmap for rock mechanics. South African Institute of Mining and Metallurgy. 2003, pp. 249—254.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.