Stress–strain assessment of rock mass around cylindrical opening by its boundary displacement measurements

The article offers a method of stress–strain assessment of rock mass around a cylindrical opening of random cross-section by measurements of normal and tangential displacements of the opening boundary. The method includes solution of a Cauchy boundary-value problem, when the Cauchy stress vector and the displacement vector are set simultaneously at the boundary of the opening. The normal and tangential displacements are expanded into the Fourier series. The problem solving uses Kolosov–Muskhelishvili’s formulas for an arbitrary cross-section cylindrical opening imaged by a conformal transformation on a single circle. The complex potentials, and the expressions of stresses and displacements in the polar and rectangular coordinate systems are obtained. For checking the computational model, the compression tests are performed with the samples made of equivalent materials (organic glass, cementand-sand mixture, marble) and with a cylindrical hole. By the measured normal and tangential displacements of the hole boundary, the calculations of the applied load and geometrics of the samples is carried out. The calculated loads and sizes of the samples are compared with their actual values, and the comparison results prove usability of the proposed method for the stress– strain assessment of rock mass around mine openings.

Keywords: rock mass, mine opening, boundary, displacements, prediction, stresses, strains, structure.
For citation:

Chanyshev A. I., Abdulin I. M., Gorodilov L. V. Stress–strain assessment of rock mass around cylindrical opening by its boundary displacement measurements. MIAB. Mining Inf. Anal. Bull. 2025;(3):80-94. [In Russ]. DOI: 10.25018/0236_1493_2025_3_0_80.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 22-17-00188.

Issue number: 3
Year: 2025
Page number: 80-94
ISBN: 0236-1493
UDK: 539.3
DOI: 10.25018/0236_1493_2025_3_0_80
Article receipt date: 26.07.2024
Date of review receipt: 16.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.02.2025
About authors:

A.I. Chanyshev1, Dr. Sci. (Phys. Mathem.), Professor, Chief Researcher, Novosibirsk State University of Economics and Management, 630099, Novosibirsk, Russia, e-mail: a.i.chanyshev@gmail.com, ORCID ID: 0000-0001-5772-0648,
I.M. Abdulin1, Researcher, e-mail: i.m.abdulin@mail.ru, ORCID ID: 0000-0003-4541-2992,
L.V. Gorodilov1, Dr. Sci. (Eng.), Assistant Professor, Head of Laboratory, e-mail: gor@misd.ru, ORCID ID: 0000-0003-0044-9783,
1 Chinakal Institute of Mining Siberian Branch, Russian Academy of Sciences, 630091, Novosibirsk, Russia.

 

For contacts:

A.I. Chanyshev, e-mail: a.i.chanyshev@gmail.com.

Bibliography:

1. Muskhelishvili N. I. Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some basic problems of the mathematical theory of elasticity], Moscow, Nauka, 1966, 708 p.

2. Deev P. V., Tsukanov A. A. Stress state of tunnel lining located near rock interface. News of the Tula state university. Sciences of Earth. 2021, no. 2, pp. 278—287. [In Russ].

3. Sammal A. S., Antsiferov S. V., Pavlova N. S. Mathematical modeling of stress-strain state of the rock mass in the vicinity of supported circular opening near the interface of rocks with different deformation characteristics. Mining sciences: fundamental and applied issues. 2019, vol. 6, no. 1, pp. 221—225. [In Russ]. DOI: 10.15372/FPVGN2019060138.

4. Hoek E., Brown E. T. The Hoek–Brown failure criterion and GSI–2018 edition. Journal of Rock Mechanics and Geotechnical Engineering. 2019, vol. 11, no. 3, pp. 445—463. [In Russ]. DOI: 10.1016/j. jrmge.2018.08.001.

5. Karev V. I., Kovalenko Y. F., Khimulia V. V., Shevtsov N. I. Parameter determination of the method of directional unloading of the reservoir based on physical modelling on a true triaxial loading setup. Journal of Mining Institute. 2022, vol. 258, pp. 906—914. [In Russ]. DOI: 10.31897/PMI.2022.95.

6. Shkuratnik V. L., Nikolenko P. V. Metody opredeleniya napryazhenno-deformirovannogo sostoyaniya massiva gornykh porod [Methods for determining the stress-strain state of a rock mass], Moscow, Izd-vo «Gornaya kniga», 2012, 112 p.

7. Demidov A. S. Equations of mathematical physics — Generalized functions and historical notes. Springer, 2023, 260 p. DOI: 10.1007/978-3-031-30358-6.

8. Campbell S. L., Haberman R. Introduction to differential equations with dynamical systems. Princeton University Press, 2011, 472 p.

9. Rebetsky Yu. L., Myagkov D. S. Genesis of tangential mass forces in lithospheric plates and their role in geodynamics. Bulletin of Kamchatka regional association «Educational-Scientific centre». Earth sciences. 2020, no. 3, pp. 88—97. [In Russ]. DOI: 10.31431/1816-5524-2020-3-47-86-97.

10. Kumar R. R., Molenaar M. M., Subbiah S. K. Constraining tectonic components during a geomechanics-aided successful hydrofracturing campaign of tight gas exploration field. Journal of Petroleum Exploration and Production Technology. 2021, vol. 12, no. 4, pp. 1121—1128. DOI: 10.1007/ s13202-021-01374-0.

11. Morozov I. A., Toksarov V. N., Polyakov I. V., Pankov I. L. Rock pressure-induced events in deep potash mines. Gornyi Zhurnal. 2023, no. 11 (2316), pp. 15—20. [In Russ]. DOI: 10.17580/ gzh.2023.11.02.

12. Hast N., Nilsson G. Measurement of stresses in rocks and their significance for the construction of dams. Problemy inzhenernoy geologii: Sbornik. Vyp. 4 [Problems of engineering geology, vol. 4], Moscow, Mir, 1967, pp. 94—105.

13. Kurlenya M. V., Popov S. N. Teoreticheskie osnovy opredeleniya napryazheniy v gornykh porodakh [Theoretical foundations for determining stresses in rocks], Novosibirsk, Nauka, 1983, 97 p.

14. Statnik E. S., Ignatyev S. D., Salimon A. I., Stepashkin A. A., Korsunsky A. M. Residual stress determination in a CC composite consisting of a carbonized elastomer matrix filled with graphite, carbon black and short carbon fibers. Frontiers in Physics. 2024, vol. 12, article 1407517. DOI: 10.3389/ fphy.2024.1407517.

15. Kuznetsov S. V., Savost'yanov E. V. Copyright certificate USSR 846730, E21C 39/00, 15.07.1981. [In Russ].

16. Sentyabov S. V., Karamnov D. V. Methods for determining the initial stresses of the rock massif by in-situ measurements. Problems of Subsoil Use. 2023, no. 1(36), pp. 54—63. [In Russ]. DOI: 10.25635/2313-1586.2023.01.054.

17. Shkuratnik L. V., Novikov E. A. Thermally stimulated acoustic emission of rocks as a promising tool of geocontrol. Gornyi Zhurnal. 2017, no. 6, pp. 21—27. [In Russ]. DOI: 10.17580/gzh.2017.06.04.

18. Feklistov Yu. G. Deformation method for the complex determination of the stress state and elastic characteristics of mining and construction objects. Problems of Subsoil Use. 2017, no. 4 (15), pp. 28—32. [In Russ]. DOI: 10.18454/2313-1586.2017.04.028.

19. Shvab A. A. Solving some problems of elasticity theory by the integral equation method for a holomorphic vector. Journal of Applied and Industrial Mathematics. 2012, vol. 6, no. 2, pp. 248—255. DOI: 10.1134/S1990478912020147.

20. Chanyshev A. I. To problem of deformed body destruction. Part 1. The main equations. Fizikotekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2001, no. 3, pp. 53—67. [In Russ].

21. Chanyshev A. I., Abdulin I. M., Belousov О. E., Gorodilov L. V., Lukyashko O. A. The use of circular slot to restore mining displacements. MIAB. Mining Inf. Anal. Bull. 2023, no. 12-2, pp. 141—158. [In Russ]. DOI: 10.25018/0236_1493_2023_122_0_141.

22. Seredin V. V., Khrulev A. S., Rastegaev A. V., Galkin V. I. Procedure of stress state assessment in rocks. Gornyi Zhurnal. 2020, no. 2, pp. 30—34. [In Russ]. DOI: 10.17580/gzh.2020.02.03.

23. Sazid M., Hussein K., Abudurman K. Rock stress measurement methods in rock mechanics — A brief overview. World Journal of Engineering and Technology. 2023, vol. 11, pp. 252—272. [In Russ]. DOI: 10.4236/wjet.2023.112018.

24. Ju W., Jiang B., Miao Q., Wang J., Qu Zh., Li M. Variation of in situ stress regime in coal reservoirs, eastern Yunnan region, South China: Implications for coalbed methane production. AAPG Bulletin. 2018, vol. 102, no. 11, pp. 2283—2303. DOI: 10.1306/04241817376.

25. Balek A. E. Geomechanical support for underground development of the second stage of the mine «Decades of independence of Kazakhstan». Innovatsionnye geotekhnologii pri razrabotke rudnykh i nerudnykh mestorozhdeniy. Sbornik dokladov IX Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Innovative geotechnologies in the development of ore and non-metallic deposits. Collection of reports of the IX International Scientific and Technical Conference], Ekaterinburg, UGGU, 2020, pp. 196—200. [In Russ].

26. Wu W. A review of unloading-induced fault instability. Underground Space. 2021, vol. 6, no. 5, pp. 528—538. DOI: 10.1016/j.undsp.2020.11.001.

27. Wang Y., Tang P., Han J., Li P. Energy-driven fracture and instability of deeply buried rock under triaxial alternative fatigue loads and multistage unloading conditions: Prior fatigue damage effect. International Journal of Fatigue. 2023, vol. 168, article 107410. DOI: 10.1016/j.ijfatigue.2022.107410.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.