Determination of total and fine airborne dust in coals

Issues on evaluation of coals ability to liberate airborne dust during transportation and transloading are nowadays relevantly current. In the current work, a new method was presented for evaluation of dust contents in coals. It is based on modeling of the processes of coals transloading and transportation. The essence is to stir coals sample of size <3mm at a constant rotation rate with a simultaneous passing a fixed volume of air through a filter system and determining the total airborne dust content and dust class sizes more or less than 10 microns. During the tests, a sample of commodity coal is used as a residue of a sieve analysis of the representative coal sample after the sieve of 3 mm. Experiments were held at two hard coals of the Kuznetsk coal basin differing in their metamorphism degree and petrographic composition. It was established that within the measurement error, the total amount of airborne dust able to be released during transloading for both the considered samples is comparable. On the other hand, the size classes distribution for dust particles over or less than 10 microns varies significantly and depends on the coals rank and petrographic composition. High inertinite contents determines, presumably, the increase of fine dust particles (less than 10 microns) in the total airborne dust released.

Keywords: coal, dust, method for dusting ability evaluation, airborne dust release, fine dust particles, metamorphism degree, petrographic composition.
For citation:

Epshtein S.A., Kossovich E. L., Vishnevskaya E. P., Agarkov K. V., Koliukh A. V. Determination of total and fine airborne dust in coals. MIAB. Mining Inf. Anal. Bull. 2020;(6):514. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-5-14.

Acknowledgements:

The work was supported by the Russian Science Foundation (grant No 18-77-10052).

Issue number: 6
Year: 2020
Page number: 5-14
ISBN: 0236-1493
UDK: 531+620.17
DOI: 10.25018/0236-1493-2020-6-0-5-14
Article receipt date: 06.02.2020
Date of review receipt: 22.04.2020
Date of the editorial board′s decision on the article′s publishing: 20.05.2020
About authors:

S.A. Epshtein1, Dr. Sci. (Eng.), Senior Researcher, Head of Laboratory, e-mail: apshtein@yandex.ru,
E.L. Kossovich1, Cand. Sci. (Phys. Mathem.), Senior Researcher, e-mail: e.kossovich@misis.ru,
E.P. Vishnevskaya1, Graduate Student,
K.V. Agarkov1, Graduate Student,
A.V. Koliukh1, Student,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia, Scientific and Training Laboratory of Physics and Chemistry of Coals.

For contacts:

S.A. Epshtein, e-mail: apshtein@yandex.ru

Bibliography:

1. Organiscak J.A., Page S. J. Airborne Dust Liberation During Coal Crushing. Coal Preparation. 2000. Vol. 21. No 5—6. Pp. 423—453. DOI: 10.1080/07349340108945630.

2. Organiscak J.A., Page S. J. Laboratory investigation of coal grindability and airborne respirable dust. Journal of the Mine Ventilation Society of South Africa. 1993. Vol. 46. No 7. Pp. 98—105.

3. Jiang H., Du C., Dong J. Investigation of rock cutting dust formation and suppression using water jets during mining. Powder Technology. 2017. Vol. 307. Pp. 99—108. DOI: 10.1016/j. powtec.2016.11.029.

4. Korshunov A. N., Dergunov D. M., Logov A. B., Gerike B. L. Coal cutting with a disk. Soviet Mining Science. 1975. Vol. 11. No 5. Pp. 571—573. DOI: 10.1007/BF02499387.

5. Chen S., Wang H., Li Y., Cui H., Zhao J., Zhang X. Theoretical and numerical analysis of coal dust separated by centrifugal force for working and heading faces. International Journal of Coal Science & Technology. 2014. Vol. 1. No 3. Pp. 338—345. DOI: 10.1007/s40789-014-0039-9.

6. Starodubov A. N., Kravtsov V. P., Zinoviev V.V. Dust formation problems and measures to ensure labor protection and ecological safety in development of coal deposits. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2018, no 4, pp. 99—104. DOI: 10.26730/19994125-2018-4-99-104. [In Russ].

7. Zhuravleva N. V. Methods for assessing the impact of extraction and processing of coal of the Kuznetsk coal basin on the ecological state of the eivnronment. Vestnik nauchnogo tsentra po bezopasnosti rabot v ugolnoy promyshlennosti. 2016, no 4, pp. 102—112. [In Russ].

8. Viktorov S. D., Kochanov A. N. Experimental regularities in formation of submicron particles under rock failure. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no 5, pp. 76—83. [In Russ]. DOI: 10.1134/S1062739116041370.

9. Page S. J., Organiscak J.A. Suggestion of a cause-and-effect relationship among coal rank, airborne dust, and incidence of workers’ pneumoconiosis. AIHAJ — American Industrial Hygiene Association. 2000. Vol. 61. No 6. Pp. 785—787.

10. Beron A. I., Pozin E. Z., Melamed V. Z. Distribution pattern of the grain-size composition of coal fractured by cutting. Soviet Mining Science. 1971. Vol. 7. No 5. Pp. 512—517. DOI: 10.1007/BF02501061.

11. Panov G. E. Dust formation kinetics as a function of the principal mechanical properties of coals. Soviet Mining Science. 1967. Vol. 3. No 5. Pp. 511—514. DOI: 10.1007/BF02497948.

12. Phan Quang Van The determination of coal dust emission and percentage of quartz in coal dust emission during the cutting anthracite coal by shearing and bottom blade of the plow. Procedia Earth and Planetary Science. 2009. Vol. 1. No 1. Pp. 250—256. DOI: 10.1016/j.proeps.2009.09.040.

13. Phan Quang Van, Drebenstedt C. The determination of quartz percentages in coal dust emission during the anthracite coal cutting by mechanical cutting tool. Mine Planning and Equipment Selection. Cham: Springer International Publishing, 2014. Pp. 665—676. DOI: 10.1007/978-3-319-02678-7_64.

14. Baafi E.Y., Ramani R. V. Rank and maceral effects on coal dust generation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1979. Vol. 16. No 2. Pp. 107—115. DOI: 10.1016/0148-9062(79)91447-5.

15. Hower J. C., Graese A. M., Klapheke J. G. Influence of microlithotype composition on hardgrove grindability for selected eastern Kentucky coals. International Journal of Coal Geology. 1987. Vol. 7. No 3. Pp. 227—244. DOI: 10.1016/0166-5162(87)90038-3.

16. Zhou W., Wang H., Wang D., Du Y., Zhang K., Qiao Y. An experimental investigation on the influence of coal brittleness on dust generation. Powder Technology. 2020. Vol. 364. Pp. 457—466. DOI: 10.1016/J.POWTEC.2020.01.074.

17. Zhou W., Wang H., Wang D., Du Y., Zhang K., Kang W. The effect of coal proximate compositions on the characteristics of dust generation using a conical pick cutting system. Powder Technology. 2019. Vol. 355. Pp. 573—581. DOI: 10.1016/j.powtec.2019.07.093.

18. Kossovich E. L., Epshtein S.A., Borodich F. M., Dobryakova N. N., Prosina V.A. Connections between micro/nano scale heterogeneity of mechanical properties of coals and their propensity to outbursts and crushing. MIAB. Mining Inf. Anal. Bull. 2019;(5):156-172. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-156-172.

19. Argatov I. I., Borodich F. M., Epshtein S.A., Kossovich E. L. Contact stiffness depthsensing indentation: Understanding of material properties of thin films attached to substrates. Mechanics of Materials. 2017. Vol. 114. Pp. 172—179. DOI: 10.1016/j.mechmat.2017.08.009.

20. Kožušníková A. Determination of microhardness and elastic modulus of coal components by using indentation method. GeoLines. 2009. Vol. 22. Pp. 40—43.

21. Epshtein S.A., Borodich F. M., Bull S. J. Evaluation of elastic modulus and hardness of highly inhomogeneous materials by nanoindentation. Applied Physics A. 2015. Vol. 119. No 1. Pp. 325—335. DOI: 10.1007/s00339-014-8971-5.

22. Kossovich E. L., Dobryakova N. N., Epshtein S.A., Belov D. S. Mechanical properties of coal microcomponents under continuous indentation. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no 5, pp. 84—91. [In Russ]. DOI: 10.1134/S1062739116041382.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.