Optimal parameters of process flows in air-decoupling blasting

Mining with drilling and blasting produces a heightened danger to people and environment because of associated phenomena. The latter include toxic gas emission, dusting, air shock and seismic wave effects, as well as thermal impact on rock mass. Decreasing the powder factor makes it possible to mitigate the adverse effect of blasting. The best way in this regard is to decouple blast hole charges by air gaps. In air-decoupling blasting, the average size of fragmentation is smaller in harder-shot rocks. The article gives justification of air gap location in blast hole, the air gap parameters and calculation of time slots of influence exerted by different parts of the air-decoupled charge. The place to arrange an air gap is selected from the comparison of geological condition of mining and calculated sizes of rock fragments. In this case, we compare the average size of particles in the bottom half of the charge at every next bench. In case of a structurally complex deposit, first of all, the average sizes of fragments in weak and strong rock layers are compared. The calculation is based on the studies into wave processes and geomechanical phenomena in fracture of rock mass.

Keywords: open pit mine, blasting, electronic detonator, explosive, air gaps, rock mas stress state, air gap size calculation, advance blasting interval calculation, safety.
For citation:

Overchenko M. N., Tolstunov S. A., Mozer S. P., Belin V. A. Optimal parameters of process flows in air-decoupling blasting. MIAB. Mining Inf. Anal. Bull. 2022;(4):87-99. [In Russ]. DOI: 10.25018/0236_1493_2022_4_0_87.

Acknowledgements:
Issue number: 4
Year: 2022
Page number: 87-99
ISBN: 0236-1493
UDK: 622.235
DOI: 10.25018/0236_1493_2022_4_0_87
Article receipt date: 11.01.2022
Date of review receipt: 14.02.2022
Date of the editorial board′s decision on the article′s publishing: 10.03.2022
About authors:

M.N. Overchenko, Cand. Sci. (Eng.), General Director, JSC «ORIKA» Ural Mining and Metallurgical Company, Moscow, Russia, e-mail: michael.overchenko@orica-ummc.ru,
S.A. Tolstunov, Cand. Sci. (Eng.), Assistant Professor, Head of Department, International Academy of Ecology and Life Protection Sciences, Saint-Petersburg, Russia, e-mail: tsaa09@mail.ru,
S.P. Mozer, Cand. Sci. (Eng.), Assistant Professor, Director of Introduction of New Technologies, JSC Orica CIS, Moscow, Russia, e-mail: sergey.mozer@orica.com,
V.A. Belin, Dr. Sci. (Eng.), Professor, Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail: bvamggu@mail.ru.

 

For contacts:

V.A. Belin, e-mail: bvamggu@mail.ru.

Bibliography:

1. Rogalev V. A. Normalizatsiya atmosfery gornorudnykh predpriyatiy [Normalization of the atmosphere of mining enterprises], Moscow, Nedra, 1993, 239 p.

2. Marchenko L. N., Kudryashov V. S. Methodological guidelines for the use of borehole charges. dispersed by air gaps, in open-pit mining. Vzryvnye raboty v sovremennykh usloviyakh [Explosive work in modern conditions], Moscow, Gosgortekhizdat, 1963, 441 p.

3. Paramonov G. P., Tolstunov S. A., Kovalevskiy V. N. Regulation of the parameters of the collapse of the rock mass during the development of permafrost formations based on a change in the design of the charge. Explosion technology. 2010, no. 103-60, pp. 133—140.

4. Leshchinskiy A. V., Shevkun E. B. Rassredotochenie skvazhinnykh zaryadov [Dispersal of borehole charges], Khabarovsk, Izd-vo TOGU, 2009, 154 p.

5. Kabwe E. Improving collar zone fragmentation by top air-deck blasting technique. Geotechnical and Geological Engineering. 2017, vol. 35, no. 1, pp. 157–167. DOI: 10.1007/s10706016-0094-7.

6. Liu L., Katsabanis P. D. Numerical modelling of the effects of air decking/decoupling in production and controlled blasting. Proceeding 5th International Conference on Rock Fragmentation by Blasting. Rotterdam, 1996, pp. 319–330.

7. Melnikov N. V., Marchenko L. N. Effective methods of application of explosion energy in mining and construction. The 12th US symposium on rock mechanics (USRMS). American Rock Mechanics Association, 1970.

8. Hayat M. B., Alagha L., Ali D. Air decks in surface blasting operations. Journal of Mining Science. 2019, vol. 55, no. 6, pp. 69-78. DOI: 10.1134/S1062739119066307.

9. Saqib S., Tariq S. M., Ali Z. Improving rock fragmentation using airdeck blasting technique. Pakistan Journal of Engineering and Applied Sciences. 2015, vol. 17, no. 1, pp. 46–52.

10. Khaqan Baluch, Jung-Kyu Kim, Seung-Jun Kim, Jin Guochen, Seung-Won Jung, HyungSik Yang, Nam-Soo Kim, Jong-Gwan Kim Numerical study on the effects of air decking in half charge blasting using AUTODYN. Explosives & Blasting. Journal of Korean Society of Explosives & Blasting Engineering. 2018, vol. 36, no. 4, pp. 1—8.

11. Kabwe E. Influence of air gap volume on achieving steady-state velocity of detonation. Mining, Metallurgy & Exploration. 2019, vol. 36, no. 20, pp. 1179–1189. DOI: 10.1007/s42461019-0095-1.

12. Pijush Pal Roy Emerging trends in drilling and blasting technology: concerns and commitments. Arabian Journal of Geosciences. 2021, vol. 14, article 652. DOI: 10.1007/s12517-02106949-z.

13. Kabwe E., Banda W. Stemming zone fragmentation analysis of optimized blasting with top-column air decks. CIM Journal. 2018, vol. 9, no. 1. DOI: 10.15834/cimj.2018.1.

14. Tangaev I. A. Energoemkost' protsessov dobychi i pererabotki poleznykh iskopaemykh [Energy intensity of the processes of mining and processing of minerals], Moscow, Nedra, 1986, 231 p.

15. Padukov V. A., Makariev V. P. Prediction of lumpiness of rock mass during blasting operations. Fizicheskie protsessy gornogo proizvodstva. Vyp. 2 [Collection of physical processes of mining production, Issue 2], Leningrad, Izd-vo LGI, 1975, pp. 63—68.

16. Khanukaev A. N. Energiya voln napryazheniy pri razrushenii gornykh porod vzryvom [The energy of stress waves during the destruction of rocks by explosion], Moscow, Gosgortekhizdat, 1962, 200 p.

17. Khanukaev A. N. On the influence of radial gaps and air gaps on the parameters of the stress wave and the destruction process. Explosion technology. 1964, no. 54-11, pp. 35—47. [In Russ].

18. Overchenko M. N., Tolstunov S. A., Mozer S. P. The influence of the axial air channel in borehole charges of emulsion explosives on the effectiveness of the explosion. Journal of Mining Institute. 2018, vol. 231, pp. 239—244. [In Russ]. DOI: 10.25515/PMI.2018.3.239.

19. Overchenko M. N., Mozer S. P., Tolstunov S. A., Belin V. A. Influence of axial air channel in holes with emulsion explosives on blasting efficiency. MIAB. Mining Inf. Anal. Bull. 2020, no. 1, pp. 61–70. [In Russ]. DOI: 10.25018/0236-1493-2020-1-0-61-70.

20. Overchenko M. N., Mozer S. P., Tolstunov S. A., Belin V. A. Design of control elements for emulsion explosive energy with programmable initiation. MIAB. Mining Inf. Anal. Bull. 2020, no. 2, pp. 92–100. [In Russ]. DOI: 10.25018/0236-1493-2020-2-0-92-100.

21. Kondratyev S. A., Martynushkin E. A, Bazhenov V. E Experience of application of electronic detonators of EDEZ-S in the conditions of JSC Resource and JSC Invest-Uglesbyt. Explosion technology. 2020, no. 129-86, pp. 105—115. [In Russ].

22. Kondratyev S. A., Sysoyev A. A., Katanov I. B. Influence of dispersal of charges on intensity of seismic influence when using not electric systems of initiation on pits. Explosion technology. 2020, no. 127-84, pp. 6—17. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.