Determination of chemical reaction zone width for emulsion explosive Poremit 1A based on uncertainty principle of quantum mechanics

characteristics of commercial emulsion explosive Poremit 1A at the Rock Failure Laboratory of the Institute of Mining, Ural Branch of the Russian Academy of Sciences. In 2004 to 2020, the instrumental measurements of Poremit 1A detonation rates were carried out in the conditions of a test site, with a barrel charge diameter of 100 mm. The mass velocity of outflow of explosion products and the sound speed in detonation products are calculated according to the hydrodynamic theory of detonation. Based on the phenomenological approach to detonation processes in explosives by Lin’s uncertainty principle in quantum mechanics, the detonation wave parameters are calculated: the time and width of the chemical reaction zone for explosive Poremit 1A. As a result of the implemented research, the approximating functions are constructed, the experimental dependence of detonation velocity on the explosive density is found, and the theoretical relationships of the chemical reaction zone width, detonation velocity and density are obtained for Poremit 1A. The empirical and theoretical correlation equations presented in the article allow relatively reliable determination of detonation rate and detonation zone width for Poremit 1A versus its density. The detonation rate of explosive Poremit 1A conforms with specifications TU 84-08628424-671-96 only within the optimal density range from 1.2 to 1.24 g/cm3. The stable chemical reaction behind the detonation wave front is governed by the density of Poremit 1A from 1.18 to 1.27 g/cm3 and by its detonation velocity from 2700 to 4750 m/s at the charge diameter of 100 mm. The denotation zone width is 14 to 25 mm in this case. Determination of the chemical reaction zone width makes it possible to find parameters of influence exerted by the emulsion explosive components on blasting efficiency under known conditions. This is an innovative trend in the study of detonation characteristics of emulsion explosives in the framework of Topic No. 0405-2019-0005 under State Contract No. 075-00581-19-00.

 

Keywords: detonation wave, chemical reaction zone width, detonation velocity, explosive density, chemical reaction time, detonation characteristics, Poremit 1A, commercial emulsion explosive.
For citation:

Menshikov P. V., Zharikov S. N., Kutuev V. A. Determination of chemical reaction zone width for emulsion explosive Poremit 1A based on uncertainty principle of quantum mechanics. MIAB. Mining Inf. Anal. Bull. 2021;(5—2):121—134. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_121.

Acknowledgements:

The study was carried out under State Contract No. 075-00581-19-00, Topic No. 0405-2019-0005 (2019–2021). The authors express special thanks to the management and personnel of Uralasbest Production Association for the backup and help in implementation of the research.

Issue number: 5
Year: 2021
Page number: 121-134
ISBN: 0236-1493
UDK: 534.222.2 + 622.235.213
DOI: 10.25018/0236_1493_2021_52_0_121
Article receipt date: 21.12.2020
Date of review receipt: 02.04.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Menshikov P. V.1, Researcher, e-mail: menshikovpv@mail.ru;
Zharikov S. N.1, Cand. Sci. (Eng.), head of the laboratory, leading researcher, e-mail: 333vista@mail.ru;
Kutuev V. A.1, Researcher, e-mail: slavik1988@mail.ru;
1 Institute of Mining of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.

 

For contacts:
Bibliography:

1. Johansson A. K., Person P. Detonatsiya vzryvchatykh veshchestv [Detonation of explosives], Moscow, Mir, 1973, 352 p. [In Russ]

2. Zel’dovich Ya. B., Rajzer Yu. P. Fizika udarnyh voln i vysokotemperaturnyh gidrodinamicheskih yavlenij [Physics of shock waves and high-temperature hydrodynamic phenomena], Moscow, Nauka, 1966, 687 p. [In Russ]

3. Neumann J. Theory of detonation waves. Office of Scientific Research and Development: Report no. 549. 1942.

4. Doring W., Burkhard G. Contribution to the theory of detonation. Tech. Report. Wright-Patterson Air Force Base, Dayton, 1949.

5. Bondarenko I. F., Zharikov S. N., Zyryanov I. V., Shemenev V. G. Burovzryvnyye raboty na kimberlitovykh kar’yerakh Yakutii [Drilling and blasting operations at kimberlite quarries of Yakutia], Ekaterinburg, IME of UB of RAS, 2017, 172 p. [In Russ]

6. Orlenko L. P. Fizika vzryva i udara: uchebnoye posobiye dlya vuzov [Physics of explosion and blow: textbook for universities], Moscow, FIZMATLIT, 2006, 304 p. [In Russ]

7. Gorinov S. A. Iniciirovanie i detonacija jemul’sionnyh vzryvchatyh veshhestv [Initiation and detonation of emulsion explosives], Yoshkar-Ola, LLC PPC “String”, 2020, 214 p. [In Russ]

8. Belin V. A., Kutuzov B. N., Ganopol’skij M. I. et al. Tehnologija i bezopasnost’ vzryvnyh rabot [Technology and safety of blasting operations], Moscow, “Gornoe delo”, 2016, 424 p. [In Russ]

9. Belin V. A. Studies of the quality of blasting operations with the use of emulsion explosives. Vzryvnoye delo, 2020, no. 127/84, pp. 37—64. [In Russ]

10. Lin E. E. Detonation zone width determination based on uncertainty principle. Pis’ma v zhurnal tekhnicheskoy fiziki, 2011, Vol. 37, no. 10, С. 9—12. [In Russ]

11. Lin E. E. Detonation zone width determination based on uncertainty principle. Technical Physics Letters, 2011, Vol. 37, no. 5, pp. 449—450. doi.org/10.1134/ S1063785011050257

12. Menshikov P. V., Shemenev V. G., Sinitsyn V. A. On the possibility of determining the width of the chemical reaction zone on the example of the emulsion explosive “ Fortis”. Problemy nedropol’zovanija, 2015, no. 4, pp. 77—83. doi.org/10.18454/2313— 1586.2015.04.077 [In Russ]

13. Lavrov V. V. O vozmozhnosti opredelenija razmerov zony detonacionnoj volny kosvennymi metodami [On the possibility of determining the size of the detonation wave zone by indirect methods] Institute of Problems of Chemical Physics RAS, available at: http:. conf.nsc.ru/explosion/ru/scientific_program (accessed 09.01.2020).

14. Silverstov V. V., Karakhanov S. M. Influence of the density of emulsion explosive on the width of the reaction zone. Vzryvnoye delo, 2006, no. 96/53, pp. 189—199. [In Russ]

15. Emulsion industrial explosive “Poremit-1A”. Technical conditions TU 84-08628424671—96, Dzerzhinsk, JSC “GosNII “Kristall”, 1996, 19 p. [In Russ]

16. Kutuev V. A. On the relationship between detonation velocity and gasification time on the example of an industrial emulsion explosive poremit 1A. Problemy nedropol’zovaniya. 2017, no. 2, p. 106—111. doi.org/10.18454 / 2313—1586.2017.02.106. [In Russ]

17. Matukhno N. S., Flyagin A. S., Shemenev V. G., Russkikh A. P., Leontyeva

I. A. Features of the use of chrysotile asbestos fibers as a sensitizer in the production of emulsion explosive. Vestnik Tekhnologicheskogo universiteta. 2016, Vol. 19, no. 13, pp. 71—76. [In Russ]

18. Žganec S., Bohanek V., Dobrilović M. Influence of a primer on the velocity of detonation of anfo and heavy anfo blends. Central European Journal of Energetic Materials, 2016, Vol. 13, no. 3, pp. 694—704. doi.org/10.22211/cejem/65017.

19. Mishra, Arvind & Rout, M & Singh, Deepanshu& Jana, S. Influence of Density of Emulsion Explosives on its Velocity of Detonation and Fragmentation of Blasted Muckpile. Current Science (India), 2017, Vol. 112, no. 3, pp. 602—608. doi.org/10.18520/cs/v112/ i03/602—608

20. Yang S., Zhang X., Peng W., Shu J., Qin S., Zhong B. Impact Initiation Characteristics of TATB Based Insensitive Explosives Mixed with HMX by Electromagnetic Velocity Gauges. GaoyaWuliXuebao, 2020, Vol. 34, no. 3, pp. 033403. doi.org/10.11858/gywlxb.20190852.

21. Pooley J., Price E., Ferguson J., Ibsen M. Detonation Velocity Measurements Using Rare-Earth Doped Fibres, 2019, Sensors, 19. 1697. doi.org/10.3390/s19071697.

22. Technique for measuring the velocity of detonation of explosives by the rheostat method using a detonation velocity meter VODMate (Instantel, Canada). Organization standard: STO 01.01.004 2011. IME of UB of RAS, Ekaterinburg, 2011, 17 p. [In Russ]

23. Methods for measuring the detonation velocity of explosives by the rheostat method, deceleration intervals between explosions of borehole charges, acceleration of seismic vibrations and pressure at the front of an air shock wave using a detonation velocity meter DATATRAP II DATA / VOD RECORDER. Organization standard: STO 01.01.001—2019. IME of UB of RAS, Ekaterinburg, 2019, 28 p. [In Russ]

24. Khariton Yu. B. Sbornik nauchnykh statey [Collection of scientific articles]. Sarov, VNIIEF, 2003, 451 p. [In Russ]

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.