Digital technologies for optimizing the dosing of flotation reagents during flotation of non-ferrous metal ores

Currently, progress in the field of flotation enrichment is closely related to the development of measuring technology, which ensures the formation of the most complete information space for the object under study, and the use of the latest mathematical and statistical methods for analyzing the data obtained, which are the basis of digital technologies. The article analyzes the modern methodological approach to solving the problem of optimization of reagent flotation modes in the study of mineral enrichment. This study is based on the study of electrochemical processes occurring directly in the flotation pulp. In the course of laboratory studies, the multifunctional effect of sodium sulfide in the flotation of non-ferrous metal ores was studied. A neural network model has been developed and tested to optimize the indicators. It is established that by optimizing the supply of sodium sulfide and stabilizing the potential of Ag2S, it is possible to increase the technological indicators of enrichment.

Keywords: flotation, collective sulfide concentrate, sodium sulfide, copper ore, ionometry, neural simulation, control of electrochemical parameters, digital techonologies.
For citation:

Yakovleva T. A., Romashev A. O., Mashevsky G. N. Digital technologies for optimizing the dosing of flotation reagents during flotation of non-ferrous metal ores. MIAB. Mining Inf. Anal. Bull. 2022;(6−2):175—188. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_175.


This research was funded by Russian Science Foundation (Project No. 19−17−00096).

Issue number: 6
Year: 2022
Page number: 175-188
ISBN: 0236-1493
UDK: 622.7.09
DOI: 10.25018/0236_1493_2022_62_0_175
Article receipt date: 14.01.2022
Date of review receipt: 21.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Romashev A. O., Cand. Sci. (Eng.), Associate Professor of the Minerals Processing Department, Saint Petersburg Mining University,, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, Russia, e-mail:;
Iakovleva T. A., PhD student of the Minerals Processing Department, Saint Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, Russia,;
Mashevsky G. N., Dr. Sci. (Eng.), Chief Technologist, NOVOMEK Group of Companies, St. Petersburg 199106, Russia, e-mail:


For contacts:

Iakovleva T. A., e-mail:


1. Litvinenko V. S., Tsvetkov P. S., Dvoynikov M. V., Buslaev G. V. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. Journal of Mining Institute. 2020. no. 244, pp. 428–438. [In Russ]. DOI: 10.31897/PMI.2020.4.5.

2. Boyko N. A., Chvileva T. A., Romasheva N. V. The impact of coal companies on the socio-economic development of coal mining regions and its assessment. Ugol. 2019. no. 11, pp. 48–53. [In Russ]. DOI: 10.18796/0041-5790-2019-11−48−53.

3. Dmitrieva D., Romasheva N. Sustainable development of oil and gas potential of the arctic and its shelf zone: The role of innovations. Journal of Marine Science and Engineering. 2020, no. 12 (8), pp. 1–18. DOI:10.3390/jmse8121003.

4. Elbendary A. M., Aleksandrova T. N., Nikolaeva N. V. Optimizing reagent regime in apatite–nepheline ore processing. MIAB. Mining Inf. Anal. Bull. 2020, no. 10, pp. 123–132. [In Russ]. DOI: 10.25018/0236-1493-2020-10−0-123−132.

5. Ivanik S. A., Ilyukhin D. A. Flotation extraction of elemental sulfur from gold-bearing cakes. Journal of Mining Institute. 2020, no. 244, pp. 202–208. [In Russ] DOI: 10.31897/ PMI.2020.2.202.

6. Arustamjan A. M., Mashevskij G. N. Neural network model of flotation process of copper-molybdenum ores. Mining Science. Collection of scientific works. Dedicated to the 25th anniversary of the North-West Branch AGN. SPb: GEOMEH. 2019. pp. 174–185. [In Russ].

7. Aleksandrova T. N., О’Connor C. Processing of platinum group metal ores in Russia and South Africa: current state and prospects. Journal of Mining Institute. 2020, vol. 244, pp. 462–473. [In Russ]. DOI: 10.31897/PMI.2020.4.9.

8. Napier-Munn T. J. Statistical methods for mineral engineers — How to design experiments and analyse data. Queensland, Australia: Julius Kruttschnitt Mineral Research Centre. 2014, 627 p.

9. Mashevskij G. N. New contours of the theory and practice of the flotation enrichment process. Collection of scientific works. Dedicated to the 25th anniversary of the North-West Branch AGN. SPb: GEOMEH. 2019, pp. 136–160. [In Russ].

10. Aleksandrova T. N., Afanasova A. V., Aleksandrov A. V. Microwave Treatment to Reduce Refractoriness of Carbonic Concentrates. Journal of Mining Science. 2020, vol. 56, no. 1, pp. 136–141.

11. Nikolaeva N. V., Aleksandrova T. N., Chanturiya E. L., Afanasova A. V. Mineral and technological features of magnetite-hematite ores and their influence on the choice of processing technology. ACS Omega. 2021, vol. 6, no. 13, pp. 9077–9085. DOI:10.1021/ acsomega.1c00129.

12. Beriashvili A. T., Pikulina V. M. A new approach to solving the variability of copper recovery by the example of Zhezkazgan ore field. Obogashchenie Rud. 2018, no. 5, pp. 40–44. [In Russ].

13. Titov D. V. The use of geophysical methods to assess the technological properties of ores of the pyrite-polymetallic deposits. Proceedings of the Tomsk Polytechnic University. 2006. vol. 4, no. 309, pp. 40–47. [In Russ].

14. Duryagina202014. Duryagina A., Heide G., Talovina I., Bravo A. Mineralogical and morphometric aspects of the rock analysis as the basis for choosing a scheme for ore preparation. E3S Web of Conferences. EDP Sciences. 2020, vol. 192, 02023.

15. Foucaud Y., Filippova I. V., Filippov L. O. Investigation of the depressants involved in the selective flotation of scheelite from apatite, fluorite, and calcium silicates: Focus on the sodium silicate/sodium carbonate system. Powder Technology. 2019, vol. 352, pp. 501–512.

16. Zhang202016. Zhang Q., Wen S., Feng Q., Zhang S. Surface characterization of azurite modified with sodium sulfide and its response to flotation mechanism. Separation and Purification Technology. 2020, vol. 242, 116760. DOI: 10.1016/j.seppur.2020.116760.

17. Zhao201817. Zhao Q., Liu W., Wei D., Wang W., Cui B., Liu W. Effect of copper ions on the flotation separation of chalcopyrite and molybdenite using sodium sulfide as a depressant. Minerals Engineering. 2018. vol. 115, pp. 44–52.

18. Balatovic M. Handbook of Flotation Reagents: Chemistry, Theory and Practice. Flotation of Sulfide Ores. Elsevier. 2007. 445 p. DOI:10.1016/B978−0-444−53029−5. X5009−6.

19. Lieberwirth H., Popov O., Aleksandrova T., Nikolaeva N. Scientific substantiation and practical realization of selective comminution process of polymetallic mineral raw materials. E3S Web of Conferences. 2020. vol. 192, no. 1, 02003. DOI: 10.1051/e3sconf/202019202003.

20. Aleksandrova T. N., Ushakov E. K., Orlova A. V. Method of complex copper–zinc ore typification using neural network models. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 140–147. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0−140−147.

21. Nakhaei F., Mosavi M. R., Sam A., Vaghei Y. Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neural network and statistical techniques. International Journal of Mineral Processing. 2012, vol. 110−111, pp. 140–154. DOI: 10.1016/j.minpro.2012.03.003.

22. Koteleva N., Kuznetsov V., Vasilyeva, N. Simulator for Educating the Digital Technologies Skills in Industry. Part One. Dynamic Simulation of Technological Processes. Applied Sciences. 2021, vol 11, no. 22, 10885. DOI:10.3390/app112210885.

23. Mashevskiy G. N., Ushakov E. K., Yakovleva T. A. Digital technology for optimizing the sodium sulphide dosage during copper ore flotation. Obogashchenie Rud. 2021, no. 3, pp. 18–33. [In Russ]. DOI: 10.17580/or.2021.03.04.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.