Optimization of power consumption at concentration plants using statistical analysis

Authors: Klyuev R.V.

The article focuses on a relevant objective of the mining industry, namely, optimization of power consumption by mineral processing activities via statistical modeling. The problem connected with the electric energy consumption has become critical now and retards rates of production of mineral resources for industries. The research procedure involves estimation of power consumption at a concentration plant as function of quantity of production machines involved in simultaneous operation. An integrated analysis of duties of electric equipment at an ore concentration workshop is performed. An engineering forecast of the electric energy consumption in different modes of equipment at a concentration plane is conducted using the method of growth rates. The dynamics of power supplies is predicted using the regression models and the least square method. The economic evaluation of options of enhanced efficiency in utilization of electric energy is given with the determination of economic effect owing to optimized loading conditions of production equipment. It is shown that the relative error of power consumption from the experimental and theoretical distribution laws of initial data arrays is never higher than the allowable value. It is recommended to maintain an optimized productivity of a processing line on the basis of a rated capacity of a mill. It is justified that the source of the electric energy saving is the increase in the mill capacity up to a statistically valid value. The figures of power savings are given for individual workshops of a concentration plant. The research findings can be in demand when upgrading and constructing operating and new concentration plants, as well as in training specialists for the mining industry.

Keywords: power, processing, ore, statistics, analysis, equipment, plant, capacity.
For citation:

Klyuev R. V. Optimization of power consumption at concentration plants using statistical analysise. MIAB. Mining Inf. Anal. Bull. 2024;(12):150-161. [In Russ]. DOI: 10. 25018/0236_1493_2024_12_0_150.

Acknowledgements:
Issue number: 12
Year: 2024
Page number: 150-161
ISBN: 0236-1493
UDK: 621.311
DOI: 10.25018/0236_1493_2024_12_0_150
Article receipt date: 12.08.2024
Date of review receipt: 16.09.2024
Date of the editorial board′s decision on the article′s publishing: 10.11.2024
About authors:

R.V. Klyuev, Dr. Sci. (Eng.), Assistant Professor, Professor, Moscow Polytechnic University, 107023, Moscow, Russia, e-mail: kluev-roman@rambler.ru, ORCID ID: 0000-0003-3777-7203.

 

For contacts:
Bibliography:

1. Golik V. I., Hasheva Z. M., Galachieva S. V. Diversification of the economic foundations of depressive mining region. The Social Sciences. 2015, vol. 10, no. 6, pp. 746—749.

2. Golik V. I. Promising direction of Sadon’s potential recovery (RNO-Alania). Sustainable Development of Mountain Territories. 2022, vol. 14, no. 1, pp. 68—75. [In Russ]. DOI: 10.21177/19984502-2022-14-1-68-75.

3. Rybak Y., Khayrutdinov M., Kongar-Syuryun C., Tyulyayeva Y. Resource-saving technologies for development of mineral deposits. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 3(49), pp. 405—415. [In Russ]. DOI: 10.21177/1998-4502-2021-13-3-406-415.

4. Pokhilenko N. P., Afanasiev V. P., Tolstov A. V., Kruk N. N., Pokhilenko L. N., Ivanova O. A. Prospects and problems of development of the raw material base of sufficient strategic types of solid mineral resources of Siberia. Geologia rudnykh mestorozhdeniy. 2023, vol. 65, no. 5, pp. 476—492. [In Russ]. DOI: 10.31857/S0016777023050088.

5. Zhao X., Yang Y., Sun F., Wang Bo, Zuo Y., Li M., Shen J., Mu F. Enrichment mechanism and exploration and development technologies of high coal rank coalbed methane in south Qinshui Basin, Shanxi Province. Petroleum Exploration and Development. 2016, vol. 43, no. 2, pp. 332—339. DOI: 10.1016/S1876-3804(16)30039-8.

6. Shadrunova I. V., Kolodezhna E. V., Gorlova O. E. Dry processing technology for fluorite ore. MIAB. Mining Inf. Anal. Bull. 2023, no. 2, pp. 43—57. [In Russ]. DOI: 10.25018/0236_1493_2023_2_0_43.

7. Baigenzhenov O., Khabiyev A., Mishra B., Aimbetova I., Yulusov S., Temirgali I., Kuldeyev Y., Korganbayeva Z. Asbestos waste treatment — an effective process to selectively recover gold and other nonferrous metals. Recycling. 2022, vol. 7, no. 6, article 85. DOI: 10.3390/recycling7060085.

8. Wang J., Zhao Q., Ning P., Wen Sh. Greenhouse gas contribution and emission reduction potential prediction of China's aluminum industry. Energy. 2024, vol. 290, article 130183. DOI: 10.1016/j. energy.2023.130183.

9. Filonchyk M., Peterson M. P., Yan H., Gusev A., Zhang L., Yang Sh. Greenhouse gas emissions and reduction strategies for the world's largest greenhouse gas emitters. Science of the Total Environment. 2024, vol. 994, article 173895. DOI: 10.1016/j.scitotenv.2024.173895.

10. Kulikova A. A., Khabarova E. I. Biological working agents use to reduce the carbon footprint. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 1, pp. 311—321. [In Russ]. DOI: 10.21177/1998-4502-2024-16-1-311-321.

11. Brigida V. S., Golik V. I., Klyuev R. V., Sabirova L. B., Mambetalieva A. R., Karlina Yu. I. Efficiency gains when using activated mill tailings in underground mining. Metallurgist. 2023, vol. 67, no. 3-4. DOI: 10.1007/s11015-023-01526-z.

12. Wang M., Wang X., Liu W. A novel technology of molybdenum extraction from low grade Ni— Mo ore. Hydrometallurgy. 2009, vol. 97, no. 1-2, pp. 126—130. DOI: 10.1016/j.hydromet.2008.12.004.

13. Morgoeva A. D., Morgoev I. D., Klyuev R. V., Gavrina O. A. Forecasting of electric energy consumption by an industrial enterprise using machine learning methods. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2022, vol. 333, no. 7, pp. 115—125. [In Russ]. DOI: 10.18799/24131830/2022/7/3527.

14. Wang Y., Zhang N., Chen X. A short-term residential load forecasting model based on LSTM recurrent neural network considering weather features. Energies. 2021, vol. 14, no. 10, article 2737. DOI: 10.3390/en14102737.

15. Klyuev R. V., Khetagurov V. N., Gavrina O. A., Plieva M. T. Integrated analysis of electric energy demand of autogenous grinding mills at concentration factories. MIAB. Mining Inf. Anal. Bull. 2023, no. 5-1, pp. 145—156. [In Russ]. DOI: 10.25018/0236_1493_2023_51_0_145.

16. Zhukovskiy Y., Batueva D., Buldysko A., Shabalov M. Motivation towards energy saving by means of IoT personal energy manager platform. Journal of Physics: Conference Series. 2019, vol. 1333, no. 6, article 062033. DOI: 10.1088/1742-6596/1333/6/062033.

17. Zinovieva O. M., Smirnova N. A. On the issue of assessing the reliability of technical devices at mining enterprisese. MIAB. Mining Inf. Anal. Bull. 2024, no. 1, pp. 157—168. [In Russ]. DOI: 10. 25018/0236_1493_2024_1_0_157.

18. Khan A.-N., Iqbal N., Rizwan A., Ahmad R., Kim D.-H. An ensemble energy consumption forecasting model based on spatial-temporal clustering analysis in residential buildings. Energies. 2021, vol. 14, no. 11, article 3020. DOI: 10.3390/en14113020.

19. Albuquerque P. C., Cajueiro D. O., Rossi M. D. C. Machine learning models for forecasting power electricity consumption using a high dimensional dataset. Expert Systems with Applications. 2022, vol. 187, article 115917. DOI: 10.1016/J.ESWA.2021.115917.

20. Buechler E., Goldin A., Rajagopal R. Improving the load flexibility of stratified electric water heaters: design and experimental validation of MPC strategies. IEEE Transactions on Smart Grid. 2024, vol. 15, pp. 3613—3623. DOI: 10.1109/TSG.2024.3366116.

21. Hamed M. M., Ali H., Abdelal Q. M. Forecasting annual electric power consumption using a random parameters model with heterogeneity in means and variances. Energy. 2022, vol. 255, article 124510. DOI: 10.1016/j.energy.2022.124510.

22. Zhou C., Chen X. Predicting China’s energy consumption: Combining machine learning with three-layer decomposition approach. Energy Reports. 2021, vol. 7, pp. 5086—5099. DOI: 10.1016/j. egyr.2021.08.103.

23. Ahmadi M., Soofiabadi M., Nikpour M., Naderi H., Abdullah L., Arandian B. Developing a deep neural network with fuzzy wavelets and integrating an inline PSO to predict energy consumption patterns in urban buildings. Mathematics. 2022, vol. 10, no. 8, article 270. DOI: 10.3390/math10081270.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.