Optimisation of fuel briquettes composition

One of the possible options for the utilization of waste coal and energy industry, as well as waste wood logging and wood processing can be briquetting to obtain briquettes with increased calorific value. The aim of the work was to justify the composition of fuel briquettes on the basis of the study of the structure of components using thermogravimetric methods. The objects in this study were taken as waste coal and wood processing industry, technical hydrolysis lignin (THL). In order to predict the calorific value of fuel briquettes of different composition, three thermal measurements with different heating rates for each component were carried out. The thermal study was carried out in an air environment at heating rates of 5, 10, 20 °C/min. The results showed that, depending on the composition of the briquette and the fractional composition of its components, the activation energy varies in the range from 128.4 to 295 kJ/mol. This can be attributed to the addition of mechanically activated hydrolysis lignin as a binder through its thermoplasticization, which also has a positive effect on the briquette structure itself. Thus, during the interaction of the components of the briquette, combined into a system, their synchronisation occurs under the influence of both external and internal factors and the technological behaviour of each individual component acquires a coordinated direction. Consequently, a purposeful change in the formulation and technological parameters ensures the production of fuel briquettes of the required quality.

Keywords: Briquetting, fuel briquettes, carbon wastes, biofuels, mechanoactivation, environmental management, thermogravimetric studies, technical hydrolysis lignin.
For citation:

Aleksandrova T. N., Nikolaeva N. V., Artamonov I. S. Optimisation of fuel briquettes composition. MIAB. Mining Inf. Anal. Bull. 2022;(6−2):149—160. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_149.

Acknowledgements:
Issue number: 6
Year: 2022
Page number: 149-160
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2022_62_0_149
Article receipt date: 14.01.2022
Date of review receipt: 07.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Aleksandrova T. N., Dr. Sci. (Eng.), Professor, Head of minerals processing departmen, http://orcid.org/0000-0002-3069-0001, Saint Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, Russia, e-mail: Aleksandrova_tn@pers.spmi.ru; Nikolaeva N. V., Cand. Sci. (Eng.), teaching assistant of minerals processing department, https://orcid.org/ 0000-0001-7492-1847, Saint Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, Russia, e-mail: Nikolaeva_nv@pers.spmi.ru;
Artamonov I. S., PhD student, Saint-Petersburg State University Industrial Technology and Design, St. Petersburg, 198095, Russia, e-mail: peet.777@mail.ru.

For contacts:

Nikolaeva Nadezhda Valerievna, e-mail: Nikolaeva_nv@pers. spmi.ru.

Bibliography:

1. Kozlov A. V., Teslya A. B., Zhang S. Principles of assessment and methodology for managing the innovation potential of coal industry enterprises. Journal of Mining Institute. 2017, vol. 223, pp. 131–138. [In Russ]. DOI: 10.18454/pmi.2017.1.131.

2. Litvinenko V. S. Digital economy as a factor in the technological development of the mineral sector. Natural Resources Research. — 2020. — vol. 29, no. 3, pp. 1521–1541. DOI: 10.1007/s11053-019-09568-4.

3. Nikulin A., Epifancev K. Selecting sustainable energetic & design parameters of a screw extruder for biofuel production. Ecology, Environment and Conservation. 2017, vol. 23, no. 2, pp.1037–1042.

4. Marinina O., Nevskaya M., Jonek-Kowalska I., Wolniak R., Marinin M. Recycling of coal fly ash as an example of an efficient circular economy: A stakeholder approach. Energies. 2021, vol. 14, no. 12. DOI: 10.3390/en14123597.

5. Que C. T., Nevskaya M., Marinina O. Coal mines in Vetnam: Geological conditions and their influence on production sustainability indicators. Sustainability (Switzerland). 2021, vol. 13, no. 21, 11800. DOI: 10.3390/su132111800.

6. Horuzhenko E. С., Dorogov V. K. Development of biofuel market in the world. Innovative Economy: Proceedings of IV International Scientific Conference. (Kazan, October 2017). Kazan: Book, 2017. pp. 27–31. [In Russ].

7. Bazhin V. Y., Kuskov V. B., Kuskova Y. V. Problems of using unclaimed coal and other carbon-containing materials as energy briquettes. Ugol. 2019, no. 4, pp. 50–54. DOI: 10.18796/0041-5790-2019-4-50−54. [In Russ].

8. Rasskazova A. V. Justification of rational parameters of lignite briquetting using mechanoactivation of fuel components. Ph.D. thesis. Transbaik. state university. Chita. 2015, 22 p. [In Russ].

9. Aleksandrova Т. N., Kuskov V. B., Afanasova А. V., Kuznetsov, V. V. (2021). Improvement of the fine coking coal flotation technology. Obogashchenie Rud. 2021, no. 3, pp. 9–13. [In Russ]. DOI:10.17580/or.2021.03.02.

10. Soloviev T. M., Burenina O. N., Zarovnyaev B. N., Nikolaeva L. A. Effect of temperature on the adhesion capacity of wood and lignite components during briquetting. MIAB. Mining Inf. Anal. Bull. 2021, no. 11, pp. 109–122. [In Russ]. DOI: 10.25018/0236_ 1493_2021_11_0_109.

11. Anca-Couce A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Progress in Energy and Combustion Science. 2016, no. 53, pp. 41–79. DOI: 10.1016/j.pecs.2015.10.002.

12. Altun N. E., Hicyilmaz C., Bagci A. S. Combustion characteristics of coal briquettes. 1. Thermal features. Energy Fuels. 2013, vol. 17 (5), pp. 1266–1276.

13. Diez M. A., Alvarez R., Cimadevilla J. L. G. Briquetting of carbon-containing wastes from steelmaking for metallurgical coke production. Fuel. 2013, vol. 114, pp. 216–223.

14. Buravchuk N. I., Guryanova O. V. Technology for the joint briquetting of waste coal and sawdust. Solid Fuel Chemistry. 2018, vol. 52, no. 5, pp. 308−312.

15. Olawole A. K., Adegoke C. O. Comparative performance of composite sawdust briquette with kerosene fuel under domestic cooking condition. Australian Journal of Science and Technology. 2008, vol. 12, no. 1, pp. 57–61.

16. Moghtaderi B., Meesri C., Wall T. F. Pyrolytic characteristics of blended coal and woody biomass. Fuel. 2004, vol. 83, no. 6, pp. 745–750. DOI: 10.1016/j.fuel.2003.05.003.

17. Onuegbu T. U., Ekpunobi U. E., Ogbu I. M., Ekeoma M. O., Obumselu F. O. Comparative studies of ignition time and water boiling test of coal and biomass briquettes blend. International Journal of Applied Science — Research and Review. 2011, vol. 7, no. 2, pp. 153–159.

18. Onuegbu T. U., Ogbu I. K., Ilochi N. O., Ekpunobi U. E., Ogbuagu A. S. Enhancing the properties of coal briquette using spear grass (imperata cylindrica). Leonardo Journal Science. 2010, no. 17, pp. 47–58.

19. Pavlova U. M., Romashev A. O., Aleksandrova T. N. Researchment of carbonaceous ores dressability with the use of directional exposure. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 2018, vol. 18, no. 1.4, pp. 147–154. DOI: 10.5593/sgem2018/1.4/S04.020.

20. Murko V. I., Baranova M. P. Justification of innovative directions of use of coal preparation products. MIAB. Mining Inf. Anal. Bull. 2022, no. 6, pp. 131–141. [In Russ]. DOI: 10.25018/0236_1493_2022_6_0_131.

21. Kim S. V., Bogoyavlenskaya O. A., Kudarinov S. Kh., Orlov A. S., Orlova V. V. Prospects for obtaining briquetted smokeless fuel from coals of open-pit fields in Kazakhstan. MIAB. Mining Inf. Anal. Bull. 2020, no. 9, pp. 147–158. [In Russ]. DOI: 10.25018/02361493-2020-3-0−87−95.

22. Guseva A. M., Yablonev A. L. Evaluation of rational modes of production of lumpy peat by a milling machine according to the indicators of density and strength. MIAB. Mining Inf. Anal. Bull. 2020, no. 3, pp. 87–95. [In Russ]. DOI: 10.25018/0236-1493-2020-10−89−98.

23. Aleksandrov A. V., Afanasova A. V., Rudenko A. P. Analysis of mechanoactivation results of technical hydrolysis lignin using methods of thermographic studies and laser diffraction. Coniferous Boreal Zone. 2018, vol. 36, no. 2, pp. 205–210. [In Russ]. DOI: 10.14258/jcprm.2020016678.

24. Aleksandrova T. N., Afanasova A. V., Ivanov E. A. Software for calculation of raw material mechanoactivation energy by thermogram interpretation. Registration certificate for computer program RU 2019666779, 13.12.2019. Application number 2019665530 dated 29.11.2019. Bulletin of Programmes for EMV №12. [In Russ].

25. Alexandrova T. N., Afanasova A. V., Heide G., Knoblich A. Investigation of the carbonaceous component of gold-bearing ores by means of thermal analysis. Paper presented at the Innovation-Based Development of the Mineral Resources Sector: Challenges and Prospects — 11th Conference of the Russian-German Raw Materials. 2018, pp. 459–466.

26. Aleksandrova T. N., Heide G., Afanasova A. V. Assessment of refractory gold-bearing ores based of interpretation of thermal analysis data. Journal of Mining Institute. 2019, vol. 235, pp. 30–37. DOI: 10.31897/PMI.2019.1.30.

27. Kondrasheva N. K., Baitalov F. D., Boitsova A. A. Comparative assessment of structural and mechanical properties of heavy oils of Timan-Pechora province. Journal of Mining Institute. 2017, vol. 225, pp. 320−329. DOI: 10.18454/pmi.2017.3.320.

28. Rodionov V. A., Tursenev S. A., Skripnik I. L., Ksenofontov Yu. G. Results of the study of kinetic parameters of selfignition of coal dust. Journal of Mining Institute. 2020, vol. 246, pp. 617–622. DOI: 10.31897/PMI.2020.6.3.

29. Saltykova S. N., Nazarenko M. Y. Influence of technological factors on coal microhardness. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2019, vol. 330, no. 11, pp. 172–178. DOI: 10.18799/24131830/2019/11/2363.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.