Optimization of the method of electrochemical destruction of phenol in ground and groundwater

Authors: Kharlamova T.A.

Phenols are one of the most toxic organic compounds, the concentrations of which in groundwater and groundwater often exceed the MPC values. Sources of organic pollution can be both biogenic and technogenic in nature. The flora and fauna are sources of biogenic phenols. Technogenic phenols are mainly formed during the development of minerals, the activities of processing enterprises, in particular, during the processing of brown and bituminous coals, peat, oil, concentrating factories of non-ferrous metallurgy, etc.; it is possible that the maximum permissible concentration for phenols in natural waters may be exceeded during wet conservation of mines of deposits, in particular, oil shale. The currently available treatment facilities do not provide treatment of technogenic waters up to the required standards, including for organic phenolic pollution related to difficult-to-oxidize compounds, which requires the modernization of existing treatment facilities and the introduction of new modern technologies. The article presents the results on the destructive oxidation of unsubstituted phenol С6Н5ОН, one of the most toxic organic pollutants of phenolic waters (MPCr.x. = 0.001 mg / l), in a monopolar electrolyzer. The optimal values of the current density are determined, which make it possible to increase the efficiency of the destructive oxidation of phenol due to the preservation of high current yields of the substance with a minimum consumption of electricity. The use of an electrochemical technique of a stepwise decrease in the current density allows more than ~ 2.4 times to reduce the consumption of electricity for the destructive oxidation of phenol with the consumption of 20—22 electrons. The process efficiency was assessed using the graphical method.

Keywords: mine waters, groundwater and groundwater, technogenic phenols, monoatomic phenol, electrolysis, destructive oxidation, anode, current density, degree of water purification, effective electrons, electricity consumption.
For citation:

Kharlamova T.A. Optimization of the method of electrochemical destruction of phenol in ground and groundwater. MIAB. Mining Inf. Anal. Bull. 2021;(2—1):220-227. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-220-227.

Acknowledgements:
Issue number: 2
Year: 2021
Page number: 220-227
ISBN: 0236-1493
UDK: 66.2; 544.6;546.76
DOI: 10.25018/0236-1493-2021-21-0-220-227
Article receipt date: 25.11.2020
Date of review receipt: 09.12.2020
Date of the editorial board′s decision on the article′s publishing: 01.02.2021
About authors:

Kharlamova T.A., Dr. Sci. (Eng.), Professor, Moscow State Regional University “MGOU”, е-mail: 9168787573@mail.ru, Russia.

For contacts:
Bibliography:

1. Potapov A.A. Experimental assessment of possible contamination of groundwater by phenols during flooding of mines of the Leningrad oil shale deposit. Vestnik SPbGU. Nauki o Zemle. 2018. T. 63. Iss. 2. Pp. 194—208. [In Russ].

2. Kolesnikova L.A., novikov A.S. The analysis of the existing techniques of assessment of environmental risks. Ugol’ — Russian Coal Journal, 2019, no. 4 (1117), pp. 97—100. [In Russ]. DOI: http://dx.doi.org/10.18796/0041-5790-2019-4-97-100.

3. Kulikova E. Yu. Estimation of factors of aggressive influence and corrosion wear of underground structures. Materials Science Forum. 2018. Vol. 931. Pp. 385—390. ISSN: 1662—9752, doi:10.4028/www.scientific.net / MSF.931.385 Trans Tech Publications, Switzerland.

4. Kulikova E. Yu. Assessment of operating environment of concrete lining of sewage collector tunnels. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 687, 044035, doi:10.1088/1757—899X/687/4/044035, pp. 1—7.

5. Zinovieva O.M., Kolesnikova L.A., Merkulova A.M. & Smirnova N.A. Environmental analysis in coal mining regions. Ugol’ — Russian Coal Journal, 2020, no. 10, pp. 62—67. [In Russ]. DOI: 10.18796/0041-5790-2020-10-62-67.

6. Kulikova A.A., Sergeeva Yu. A., Ovchinnikova T.I., Khabarova E.I. Formation of mine water composition and analysis of treatment methods. MIAB. Mining Inf. Anal. Bull. 2020;(7):135—145. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-135-145.

7. Pelipenko M.V., Balovtsev S.V., Aynbinder I.I. Integrated accident risk assessment in mines. MIAB. Mining Inf. Anal. Bull. 2019, no. 11, pp. 180—192. DOI: 10.25018/02361493-2019-11-0-180-192. [In Russ].

8. Lebedev V.S., Skopintseva O.V. Residual coalbed gas components: Composition, content, hazard. Gornyi Zhurnal. 2017, no. 4, pp. 84—86. [In Russ]. DOI: 10. 17580/ gzh.2017.04.17.

9. Do J.-S., Yen W.-C. Paired electrooхidative degradation of Phenol with in situ electrogenerated hydrogen peroхide and hypochlorite. J.of applied electrochemistry. 1996. V. 26. Pp. 673—678.

10. Balovtsev S.V., Skopintseva O.V., Kolikov K.S. Aerological risk management in designing, operation, closure and temporary shutdown of coal mines. MIAB. Mining Inf. Anal. Bull. 2020;(6):85—94. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-85-94.

11. Rybak J., Ivannikov A., Kulikova E., Żyrek T. Deep excavation in urban areas — defects of surrounding buildings at various stages of construction. // MATEC Web Conf. Vol.146, 2018. https://doi.org/10.1051/matecconf/20181460201.

12. Sharifian H., Kirk D.W. Electrochemical Oхidation of Phenol J. Electrochem. Soc. 1986. May. Pp. 921—924.

13. Rajkumar D. Electrochemical treatment of industrial wastewater. J. of Hazardous Materials. 2004. V. 113. no. 1—3. Pp. 123—129.

14. Aliev Z.M., Kharlamova T.A. Use of electrolysis under pressure for destructive oxidation of phenol and azo dyes. Russian Journal of Electrochemistry. 2016. Т. 52. no. 3. Рp. 251—259.

15. Mohammed A. Ajeel, Mohamed Kheireddine Aroua, Wan Mohd Ashri Wan Daud. Anodic Degradation of 2-Chlorophenol by Carbon Black Diamond and Activated Carbon Composite Electrodes. Electrochimica Acta. 2015. V. 180. Pp. 22—28.

16. Germán Santana-Martíneza, Gabriela Roa-Moralesa,, Eduardo Martin del Campob, Rubí Romeroa, Bernardo A. Frontana-Uribea,c, Reyna Natividada, Electro-Fenton and Electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization. Electrochimica Acta. 2016. V.195. Pp. 246—256.

17. Hagars P.L. Natishan P.M. Stoner B.R. O’Grady W.E. Electrochemical Oхidation of Phenol Using Boron-Doped Diamond Electrodes. J. Of The Electrochemical Society. 2001. V. 148. no. 7. Pp. E298-E301.

18. Lurie Yu. Yu., Rybnikova A.I. Khimicheskiy analiz proizvodstvennykh stochnykh vod [Chemical analysis of industrial wastewater]. Moscow: Khimiya1966, 278 p. [In Russ].

19. Tomilov A.P., Mayranovsky S.G., Fioshin M. Ya., Smirnov V.A. Elektrokhimiya organicheskikh soyedineniy [Electrochemistry of organic compounds]. Moscow: Khimiya 1968, 592 p. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.