Optimizing reagent regime in apatite–nepheline ore processing

The studies aim to upgrade production technology of commercial quality apatite concentrate (Р2О5 content more than 30%). The chemical analysis uses the energy dispersive X-ray fluorescence spectrometer, mineralogy is studied using electron microscopy, and flotation tests are carried out on flotation machine 237 FL-A. The influence of particle size on flotation parameters is analyzed. High pH of pulp is beneficial for flotation of apatite–nepheline ore. The mode of apatite ore flotation is optimized. Apatite associates with almost all minerals and often occurs in grains of other minerals. The computer-aided mineralogical analysis reveals that 32.78% of apatite occurs in free particles, and 22.29% and 44.92%—in binary and polymineral aggregates, respectively. The test flotation of Khibiny apatite ore produced apatite concentrate with P2O5 content of 39.04% at P2O5 recovery of 96.66%.

Keywords: apatite–nepheline ore, phosphorus-bearing minerals, flotation, reagent regime, optimization.
For citation:

Elbendary A. M., Aleksandrova T. N., Nikolaeva N. V. Optimizing reagent regime in apatite–nepheline ore processing. MIAB. Mining Inf. Anal. Bull. 2020;(10):123-132. [In Russ]. DOI: 10.25018/0236-1493-2020-10-0-123-132.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 19-17-00096.

Issue number: 10
Year: 2020
Page number: 123-132
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236-1493-2020-10-0-123-132
Article receipt date: 06.02.2020
Date of review receipt: 23.03.2020
Date of the editorial board′s decision on the article′s publishing: 20.09.2020
About authors:

A.M. Elbendary1, Graduate Student,
T.N. Aleksandrova1, Dr. Sci. (Eng.), Professor, Head of Chair,
N.V. Nikolaeva1, Cand. Sci. (Eng.), Assistant Professor, e-mail: nadegdaspb@mail.ru,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

For contacts:

N.V. Nikolaeva, e-mail: nadegdaspb@mail.ru.

Bibliography:

1. Evdokimova G.A., Gershenkop A. Sh., Fokina N. V. The impact of bacteria of circulating water on apatite-nepheline ore flotation. Journal of Environmental Science and Health — Part A Toxic / Hazardous Substances and Environmental Engineering. 2012. Vol. 47. No 3. Pp. 398—404.

2. Mitrofanova G. V., Ivanova V.A., Artemiev A. V. Use of reagents-flocculants in water-preparation processes during phosphorous-containing ore processing. 17th International Multidisciplinary Scientific GeoConference SGEM 2017. 2017. Vol. 17. No 11. Pp. 1143—1150. DOI: 10.5593/sgem2017/11/S04.146.

3. Barmin I. S., Beloborodov V.I., Sedinin D.F. Improving of flotation efficiency of apatite using ethoxylated monoalkylphenols. MIAB. Mining Inf. Anal. Bull. 2011, no 4, pp. 229—231. [In Russ].

4. Blazy P., Jdid E.A. Removal of ferriferous dolomite by magnetic separation from the Egyptian Abu Tartur phosphate ore. International Journal of Mineral Processing. 1997. Vol. 49. Pp. 49—58.

5. Shaikh A. M. H., Dixit S. G. Beneficiation of phosphate ores using high gradient magnetic separation. International Journal of Mineral Processing. 1993. Vol. 37. Pp. 149—162.

6. Bezzi N., Aïfa T., Merabet D., Pivan J. Magnetic properties of the Bled El Hadba phosphate-bearing formation (Djebel Onk, Algeria): Consequences on the enrichment of the phosphate ore deposit. Journal of African Earth Sciences. 2006. Vol. 50. Pp. 255—267.

7. Xin L., Yimin Z., Tao L., Zhenlei C., Tiejun C., Kun S. Beneficiation of a sedimentary phosphate ore by a combination of spiral gravity and direct-reverse flotation. Minerals. 2016. Vol. 6. No 2. Pp. 38.

8. El-Boraey H.A., El-Shennawy A.A., Masoud A. M., Gado H. S. Beneficiation of low-grade phosphate ore using desliming and gravity separation technique. Journal of Chemical, Biological and Physical Sciences. 2017. Vol. 7. No 2.

9. Ciccu R., Delfa C., Alfanu G. B., Carbini P., Currelli L., Saba P. Some tests of the electrostatic separation applied to phosphates with carbonate gangue. Proceedings of the International Mineral Processing Congress, University of Cagliari, Cagliari, Italy. 1972.

10. Abouzeid A. M.; Khazback A. E.; Hassan S.A. Changing scopes in mineral processing. Proceedings of the International Mineral Processing Symposium, Izmir, Turkey, 26 September. 1996. Pp. 161—170.

11. Zafar Z. I., Anwar M. M., Pritchard D. W. Optimization of thermal beneficiation of a low grade dolomitic phosphate rock. International Journal of Mineral Processing. 1995. Vol. 43. Pp. 123—131.

12. Watti A., Alnjjar M., Hammal A. Improving the specifications of Syrian raw phosphate by thermal treatment. Arabian Journal of Chemistry. 2016. Vol. 9. Pp. 637—642.

13. Gharabaghi M., Irannajad M., Noaparast M. A review of the beneficiation of calcareous phosphate ores using organic acid leaching. Hydrometallurgy. 2010. Vol. 103. Pp. 96—107.

14. Laird D. H., Ng D. Magnesium separation from dolomitic phosphate by acid leaching. Final report, FIPR Project #91-01-093. 1992.

15. Brylyakov Yu. E. Razvitie teorii i praktiki kompleksnogo obogashcheniya apatitnefelinovykh rud Khibinskikh mestorozhdeniy [Development of theory and practice of complex enrichment of apatite-nepheline ores of Khibiny deposits], Doctor's thesis, Moscow, 2004, 40 p.

16. Sizyakov V. M., Brichkin V. N. About the role of hydrafed calcium carboaluminates in improving the technology of complex processing of nephelines. Journal of Mining Institute. 2018. Vol. 231. Pp. 292—298. DOI: 10.25515/PMI.2018.3.292.

17. Lvov V., Sishchuk J., Chitalov L. Intensification of bond ball mill work index test through various methods. 17th International Multidisciplinary Scientific GeoConference SGEM 2017. 2017. Vol. 17. No 11. Pp. 857—864.

18. Aleksandrova T. N., Litvinova N. M., Gurman M.A., Aleksandrov A. V. Comprehensive utilization of the far eastern apatite-containing raw materials. Journal of Mining Science. 2012. Vol. 48. No 6. Pp. 1047—1053.

19. Kawatra S. K., Carlson J. T. Beneficiation of phosphate ore. Society for Mining, Metallurgy & Exploration, 2013. 168 p.

20. Aleksandrova T. N., Nikolaeva N., Romashev A. An experimental and theoretical approach to the assessment of the specific surface of apatite-nepheline ore in the process of grinding. 15th International Multidisciplinary Scientific GeoConference SGEM2015. 2015. Book 1. Vol. 1. Pp. 577—584. DOI: 10.5593/sgem2015/b11/s4.073.

21. Elbendary A., Aleksandrova T., Nikolaeva N. Influence of operating parameters on the flotation of the Khibiny Apatite-Nepheline Deposits. Journal of Materials Research and Technology. 2019. Vol. 8. No 6. Pp. 5080—5090. DOI: 10.1016/j.jmrt.2019.08.027.

22. Azizi A., Seyyed A. G. S. M. Relative floatability as a criterion for evaluating the separation performance of phosphate from iron. International Journal of Mining Science and Technology. 2017. Vol. 27. No 3. Pp. 451—458.

23. Santana R. C., Ribeiro J.A., Santos M.A., Reis A. S., Ataíde C. H., Barrozo M.A. S., Flotation of fine apatitic ore using microbubbles. Separation and Purification Technology. 2012. Vol. 98. No 19. Pp. 402—409.

24. Feng D., Aldrich C. Influence of operating parameters on the flotation of apatite. Minerals Engineering. 2004. Vol. 17. No 3. Pp. 453—455.

25. Ivanova V.A., Mitrofanova G. V., Perunkova T. N., Brylyakov Yu. E., Bykov M. E., Kostrova M.A. Влияние солей жесткости на технологические показатели флотации апатита Effect of hardness salts on technological indicators of apatite flotation. Gornyi Zhurnal. 2002, no 11—12, pp. 62—64. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.