Antimony circuit optimization in flotation of gold-bearing antimony ore

The test subject is the gold-bearing antimony ore from an East Siberian deposit. This ore is a moderate sulphide type: sulphides are mostly antimonite, arsenopyrite, pyrite–marca site and pyrrhotine, and the main rock-forming minerals are quarts and mica–hydromica. The ore contains 5.14% antimony, 0.51% arsenic and 0.86 g/t gold. The concentration flowsheet of the ore assumes two-stage milling, selective extraction of the antimony concentrate, flotation of gold-bearing sulphides, and then thickening and filtration of the marketable concentrates. The experimental design for optimizing the agent mode of antimony flotation used a statistical method by Box–Wilson. The operating conditions of antimony flotation to ensure the antimony concentration with Sb recovery of 69% at Sb content of 52% are: рН = 6, flotation time = 8 min, consumption of Pb(NO3)2 = 500 g/t, consumption of DBDFA = 25 g/t, consumption of T-92 = 30 g/t. These operating conditions enable the increase in the antimony recovery in the concentrate by 37.5% at the increased metal content from 29% to 52% and at the decreased content of antimony in the antimony concentrate by 2 times as compared with the flotation process variables in the factory-adopted regime.

Keywords: gold-bearing antimony ore, arsenopyrite, antimonite, flotation, process variables, selective flowsheet, antimonite flotation, gold, statistical design.
For citation:

Algebraistova N. K., Ananenko E. S., Prokopev I. V., Golsman D. A. Antimony circuit optimization in flotation of gold-bearing antimony ore. MIAB. Mining Inf. Anal. Bull. 2023;(8):128-137. [In Russ]. DOI: 10.25018/0236_1493_2023_8_0_128.

Acknowledgements:
Issue number: 8
Year: 2023
Page number: 128-137
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236_1493_2023_8_0_128
Article receipt date: 19.01.2023
Date of review receipt: 10.04.2023
Date of the editorial board′s decision on the article′s publishing: 10.07.2023
About authors:

N.K. Algebraistova1, Cand. Sci. (Eng.), Assistant Professor, e-mail: algebraistova@mail.ru, ORCID ID: 0000-0002-0185-8389,
E.S. Ananenko1, Graduate Student, e-mail: ananenkoes@inbox.ru, ORCID ID: 0000-0002-1299-5397,
I.V. Prokopev, Cand. Sci. (Eng.), Assistant Professor, e-mail: prokopiev.iv@yandex.ru, ORCID ID: 0000-0002-9230-6415, M.K. Ammosov North-Eastern Federal University, 677000, Yakutsk, Republic of Sakha, Russia,
D.A. Golsman1, Cand. Sci. (Eng.), Assistant Professor, e-mail: golsman_d@mail.ru,
1 Siberian Federal University, 660025, Krasnoyarsk, Russia.

 

For contacts:

E.S. Ananenko, e-mail: ananenkoes@inbox.ru.

Bibliography:

1. Matveeva T. N., Gromova N. K., Lantsova L. B. Development of a method for selective flotation of antimony and arsenic sulfides in the enrichment of complex gold-bearing ores. Tsvetnye Metally. 2019, no. 4, pp. 6—12. [In Russ]. DOI: 10.17580/tsm.2019.04.01.

2. Ignatkina V. A., Kayumov A. A., Ergesheva N. D., Chernova P. A. Floatability of low-oxidizable molybdenum and antimony sulfides in controlled oxidation-reduction conditions. Fizikotekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2023, no. 1, pp. 145—160. [In Russ]. DOI: 10.15372/FTPRPI20230114.

3. Matveeva T. N. Flotation reagents for finely disseminated gold extraction from unenriched ores and technogenic products. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 2, pp. 201—207. [In Russ]. DOI: 10.21177/1998-4502-2021-13-2-201-207.

4. Solozhenkin P. M. Development of principles for selecting reagents for flotation of antimony and bismuth minerals. Doklady Akademii nauk. 2016, vol. 466, no. 5, pp. 559. [In Russ].

5. Solozhenkin P. M., Kushakov S. T., Kovalev V. N. Creation of technology of industrial processing gold — antimonic concentrates in region of the far North. MIAB. Mining Inf. Anal. Bull. 2018, no. S1, pp. 395—407. [In Russ]. DOI: 10.25018/0236-1493-2018-1-1-395-407.

6. Kanarskii A. V., Adamov E. V., Krylova L. N. Flotation concentration of the sulfide antimony-arsenic gold bearing ore. Izvestiya vuzov. Tsvetnaya metallurgiya. 2012, no. 2, pp. 12—17. [In Russ].

7. Segura-Salazar J., Brito-Parada P. Stibnite froth flotation. A critical review. Minerals Engineering. 2021, vol. 163, article 106713. DOI: 10.1016/j.mineng.2020.106713.

8. Jianhua Chen The interaction of flotation reagents with metal ions in mineral surfaces. A perspective from coordination chemistry. Minerals Engineering. 2021, vol. 171, article 107067. DOI: 10.1016/j.mineng.2021.107067.

9. Dembele S., Akcil A., Panda S. Technological trends, emerging applications and metallurgical strategies in antimony recovery from stibnite. Minerals Engineering. 2022, vol. 175, article 107304. DOI: 10.1016/j.mineng.2021.107304.

10. Cui W., Zhang J., Liu Z. Selective enhancement of jamesonite flotation using Aerophine 3418A/DDTC mixture. Minerals Engineering. 2023, vol. 191, article 107934. DOI: 10.1016/j. mineng.2022.107934.

11. Ignatkina V. A., Kayumov A. A., Yergesheva N. D. Floatability and calculated reactivity of gold and sulfide minerals. Russian Journal of Non-Ferrous Metals. 2022, vol. 63, pp. 473—481. DOI: 10.3103/S1067821222050054.

12. Li Z., Wang Y., Jia M., Wen L., Wang Х., Wei J. Effect and mechanism of depressant disodium carboxymethyl trithiocarbonate on flotation Separation of stibnite and pyrite. Mining, Metallurgy & Exploration. 2022, vol. 39, pp. 1267—1275. DOI: 10.1007/s42461-022-00582-4.

13. Ozer M. Flotation of antimony ores with high arsenic content. Physicochemical Problems of Mineral Processing. 2022, vol. 5, article 152865. DOI:10.37190/ppmp/152865.

14. Solozhenkin P. M. Flotation of gold minerals by promising collecting agents based on molecular modeling data. Gornyi Zhurnal. 2017, no. 11, pp. 94—96. [In Russ]. DOI: 10.17580/ gzh.2017.11.17.

15. Guo X., Xin Yu., Wang H., Tian Q. Mineralogical characterization and pretreatment for antimony extraction by ozone of antimony-bearing refractory gold concentrates. Transactions of Nonferrous Metals Society of China. 2017, vol. 27, no. 8, pp. 1888—1895. DOI: 10.1016/ S1003-6326(17)60213-9.

16. Cao Q., Huang Y., Zou H., Wen S. The surface features of activated stibnite surface with copper or lead ion. Physicochemical Problems of Mineral Processing. 2018, vol. 54, no. 3, pp. 763—770. DOI: 10.5277/ppmp1884.

17. Wu J., Nie Q., Huo J., Gou M. Experimental research on mineral processing for a stibnite ore in Shaanxi. IOP Conference Series. Earth and Environmental Science. 2019, vol. 227, no. 4, article 042024. DOI: 10.1088/1755-1315/227/4/042024.

18. Senchenko A. Y., Ulianov S. V., Shvets A. A., Aksenov A. V. Development of a technology to process antimonite gold-bearing ore. XXVIII International Mineral Processing Congress. Canadian Institute of Mining, Metallurgy and Petroleum. 2016, pp. 303—313.

19. Qin X., Deng J., Lai H., Zhang X. Beneficiation of Antimony oxide ore. A review. Russian Journal of Non-Ferrous Metal. 2017, vol. 58, pp. 321—329. DOI: 10.3103/S1067821217040186.

20. Multani R. S., Feldmann T., Demopoulos G. P. Antimony in the metallurgical industry. A review of its chemistry and environmental stabilization options. Hydrometallurgy. 2016, vol. 164, pp. 141—153. DOI: 10.1016/j.hydromet.2016.06.014.

21. Abdusalyamova M., Dreisinger D., Zinchenko Z., Solozhenkin P., Gadoev S., Tyumin I., Ismailova M. Processing of mercury-stibium gold bearing ore of Djijikrut deposit. 26th International Mineral Processing Congress, IMPC 2012: Innovative Processing For Sustainable Growth. Conference Proceedings. 2013, pp. 308—317. DOI: 10.17265/2162-5263/2013.05.006.

22. Matveeva T. N., Ivanova T. A., Getman V. V., Gromova N. K. New flotation agents for recovery of microand nanoparticles of precious metals from rebellious ore. Gornyi Zhurnal. 2017, no. 11, pp. 89—94. [In Russ]. DOI: 10.17580/gzh.2017.11.16.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.