Optimization of raw mix using technogenic waste to produce cement clinker

This article presents the results of the possible utilization of technogenic raw materials, in particular, technogenic tailings of the Nadezhdinsky Metallurgical Plant, slags of copper production of the mining and metallurgical plant Norilsk Nickel by processing them as secondary mineral raw materials in order to reduce their anthropogenic impact on the environment of the Arctic region. In particular, studies were conducted to optimize the composition of the raw material mix and chemical and mineralogical composition of cement clinker. optimization was carried out using the software package “ROCS”, designed for the calculation and optimization of cement raw mixes depending on the saturation coefficient, with determining the component chemical composition of the raw mix and cement clinker, mineralogical composition of cement clinker, the thermal effect of clinker formation (FEC) and fuel consumption for firing (Gfuel). In the course of the research it was found that: technogenic raw materials in the form of tailings and slags of copper production can be used as secondary mineral raw materials for cement clinker production; depending on the saturation coefficient, it is possible to obtain cement clinker of a certain mineralogical composition, both low — base (belite) and high-base (alite); depending on the mineralogical composition of clinker, optimal compositions of raw mixtures for belite (low-base) cement clinker-limestone are as follows: 72.97%; dump tails-0.71%; slag-26.32%, and for alite (high — base) — limestone-81.71%; dump tailings-3.52%; slag-14.77%.

Keywords: cement clinker, industrial waste, optimization.
For citation:

Kolesnikova O., Vasilyeva N., Kolesnikov A., Zolkin A. Optimization of raw mix using technogenic waste to produce cement clinker. MIAB. Mining Inf. Anal. Bull. 2022;(10-1): 103—115. [In Russ]. DOI: 10.25018/0236_1493_2022_101_0_103.

Acknowledgements:
Issue number: 10
Year: 2022
Page number: 103-115
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_101_0_103
Article receipt date: 20.03.2022
Date of review receipt: 27.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Kolesnikova O. G.1, Master of Engineering and Technology, Junior Researcher, e-mail: kas164@yandex.kz, ORCID ID: 0000-0001-6871-8367;
Vasilyeva N. V.2, Cand. Sci. (Eng.), Associate Professor, e-mail: vasileva_nv@pers.spmi.ru, ORCID ID: 0000-0001-7408-7290,
Kolesnikov A. S.1, Cand. Sci. (Eng.), Professor, e-mail: kas164@yandex.kz, ORCID ID: 0000-0002-8060-6234;
Zolkin A. L.3, Cand. Sci. (Eng.), Associate Professor, e-mail: alzolkin@list.ru,ORCID ID: 0000-0001-5806-9906;
1 M. Auezov South Kazakhstan University, 160012, Shymkent, Kazakhstan;
2 Saint Petersburg Mining University, 199106, Saint-Petersburg, Russia;
3 Povolzhskiy State University of Telecommunications and Informatics, 443010, Samara, Russia.

 

For contacts:

Vasilyeva N. V., e-mail: vasileva_nv@pers.spmi.ru.

Bibliography:

1. Pavlenko V I. (2013). Arctic zone of the Russian Federation in the system of national interests of the country. Arctic: ecology and economy, 4, 12, 16−25.

2. Bortnikov, N. S. (2014). Strategic mineral resources of the Russian Arctic and problems of its development. Scientific and technical problems of the Arctic development. Scientific session of the General Meeting of the members of the RAS.

3. Dodin D. A., Kaminsky V. D., Zoloev K. K., Koroteev V. A. (2010). A strategy of assimilation and study of Russian Arctic and Subarctic mineralproduct base in condition of passage to steady development. Lithosph. 6, 3−24.

4. Ilinova, A., Chanysheva, A., Kourentzes, N. and Svetunkov, I., 2019. Producing longterm forecasts of the development of Arctic shelf. Innovation-Based Development of the Mineral Resources Sector: Challenges and Prospects 11th conference of the RussianGerman Raw Materials, pp. 539−553.

5. Kolesnikov A, Fediuk R, Amran M, Klyuev S, Klyuev A, Volokitina I, Naukenova A, Shapalov S, Utelbayeva A, Kolesnikova O, Bazarkhankyzy A. Modeling of NonFerrous Metallurgy Waste Disposal with the Production of Iron Silicides and Zinc Distillation. Materials. 2022; 15(7):2542. https://doi.org/10.3390/ma15072542.

6. Bochevskaya, Y. G., Abisheva, Z. S., Karshigina, Z. B., Sargelova, E. A., Kvyatkovskaya, M. N., & Akchulakova, S. T. (2018). Effect of the temperature conditions of sulfation process on extraction of rare-earth metals from refractory ore. Metallurgist, 62(5−6), 574−586. DOI:10.1007/s11015−018−0695-x.

7. Kolesnikov, A. S., Zhakipbaev, B. Y., Zhanikulov, N. N., Kolesnikova, O. G., Аkhmetova, Е. K., Kuraev, R. M., & Shal, A. L. (2021). Review of technogenic waste and methods of its processing for the purpose of complex utilization of tailings from the enrichment of nonferrous metal ores as a component of the raw material mixture in the production of cement clinker. Rasayan Journal of Chemistry, 14(2), 997−1005. DOI:10.31788/RJC.2021.1426229.

8. Kolesnikov A, Fediuk R, Kolesnikova O, Zhanikulov N, Zhakipbayev B, Kuraev R, Akhmetova E, Shal A. Processing of Waste from Enrichment with the Production of Cement Clinker and the Extraction of Zinc. Materials. 2022; 15(1):324, pp. 1–9. https://doi. org/10.3390/ma15010324.

9. Bondarenko, V. P., Nadirov, K. S., Golubev, V. G., Kolesnikov, A. S., & Sadyrbaeva, A. S. (2017). Study of a reagent-emulsifier for the preparation of reverse water-oil emulsions used for well-killing. Neftyanoe Khozyaystvo Oil Industry, (1), 58−60.

10. Kenzhaliyev, B. K., Trebukhov, S. A., Nitsenko, A. V., Burabayeva, N. M., & Trebukhov, A. A. (2019). Determination of technological parameters of selenium recovery from metallurgical production middlings in a vacuum distillation unit. International Journal of Mechanical and Production Engineering Research and Development, 9(6), 87−98. DOI:10.24247/ijmperddec20198.

11. Baigenzhenov, O. S., Kozlov, V. A., Luganov, V. A., Shayahmetova, R. A., Aimbetova, I. O. (2015). Complex Processing of Wastes Generated in Chrysotile Asbestos Production. Min. Proces. and Extract. Metal. Rev., 4. DOI: 10.1080/08827508.2014.955610.

12. Siziakova, E. V., Ivanov, P. V., Boikov, A. V. (2019). Application of calcium hydrocarboaluminate for the production of coarse-graded alumina. Journal of Chemical Technology and Metallurgy, 54, 200−203.

13. Yang, C., Qin, W., Lai, S., Wang, J., Zhang, Y., Jiao, F.,.. Chang, Z. (2011). Bioleaching of a low grade nickel-copper-cobalt sulfide ore. Hydrometallurgy, 106(1−2), 32−37. DOI:10.1016/j.hydromet.2010.11.013.

14. Nadirov, K. S., Zhantasov, M. K., Sakybayev, B. A., Orynbasarov, A. K., Bimbetova, G. Z., Sadyrbayeva, A. S.,.. Tuleuov, A. M. (2017). The study of the gossypol resin impact on adhesive properties of the intermediate layer of the pipeline three-layer rust protection coating. International Journal of Adhesion and Adhesives, 78, 195−199. DOI:10.1016/j. ijadhadh.2017.07.001.

15. Donayev, A., Kolesnikov, A., Shapalov, S., Sapargaliyeva, B., Ivakhniyuk, G., Studies of waste from the mining and metallurgical industry, with the determination of its impact on the life of the population, News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2022, 2022(4), pp. 55–68.

16. Nadirov, K. S., Zhantasov, M. K., Bimbetova, G. Z., Kolesnikov, A. S., Sadyrbayeva, A. S., Orynbasarov, A. K.,.. Zhantasova, D. (2016). Examination of optimal parameters of oxy-ethylation of fatty acids with a view to obtaining demulsifiers for deliquefaction in the system of skimming and treatment of oil: A method to obtain demulsifier from fatty acids. Chimica Oggi/Chemistry Today, 34(1), 72−77.

17. Razmanova, S. V., & Andrukhova, О. V. (2020). Oilfield service companies as part of economy digitalization: Assessment of the prospects for innovative development. Journal of Mining Institute, 244(4), 482−492. DOI:10.31897/PMI.2020.4.11.

18. Nedosekin, A. O., Rejshahrit, E. I., & Kozlovskiy, A. N. (2019). Strategic approach to assessing economic sustainability objects of mineral resources sector of russia. Journal of Mining Institute, 237, 354−360. DOI:10.31897/PMI.2019.3.354.

19. Serpukhovitina T.Yu., Lazarev R. A., Logvinova A. N., Tsytsorin I. A. Analysis of anthropogenic factors of influence on the hydrosphere and ways to reduce them in mining regions. MIAB. Mining Inf. Anal. Bull. 2021;(2–1):263–274. [In Russ]. DOI: 10.25018/02361493-2021-21-0-263-274.

20. Beloglazov, I. I., Petrov, P. A., & Bazhin, V. Y. (2020). The concept of digital twins for tech operator training simulator design for mining and processing industry. Eurasian Mining, 2020(2), 50−54. DOI:10.17580/em.2020.02.12.

21. Kulikova A. A., Khabarova E. I., Sergeeva Yu. A. Prospects for pressure-driven membrane technologies in mining. MIAB. Mining Inf. Anal. Bull. 2021;(2):22–32. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0-22-32.

22. Safiullin, R. N., Afanasyev, A. S., & Reznichenko, V. V. (2019). The concept of development of monitoring systems and management of intelligent technical complexes. Journal of Mining Institute, 237, 322−330. DOI:10.31897/PMI.2019.3.322.

23. Kul’chitskii, A. A., & Kashin, D. A. (2019). The choice of a method for non-contact assessment of the composition of briquetted charge materials. Journal of Physics: Conference Series, 1399(4). DOI:10.1088/1742−6596/1399/4/044108.

24. Kolesnikov, A. S. Thermodynamic simulation of silicon and iron reduction and zinc and lead distillation in zincoligonite ore-carbon systems. Russ. J. Non-ferrous Metals 55, 513– 518 (2014). https://doi.org/10.3103/S1067821214060121.

25. Kolesnikov, A. S. (2015). Kinetic investigations into the distillation of nonferrous metals during complex processing of waste of metallurgical industry. Russian Journal of Non-Ferrous Metals, 56(1), 1−5. DOI:10.3103/S1067821215010113.

26. Fedorova, E. R., Kanavec, E. K., & Kiryakina, Y. K. (2019). Mathematical model of red sludge sedimentation in single-level circular thickener. Journal of Physics: Conference Series, 1333(3). DOI:10.1088/1742−6596/1333/3/032018.

27. Vasilyeva, N., Fedorova, E., & Kolesnikov, A. (2021). Big data as a tool for building a predictive model of mill roll wear. Symmetry, 13(5). DOI:10.3390/sym13050859.

28. Cherepovitsyn, A. E., Lipina, S. А., & Evseeva, O. О. (2018). Innovative approach to the development of mineral raw materials of the arctic zone of the russian federation. Journal of Mining Institute, 232, 438−444. DOI:10.31897/pmi.2018.4.438.

29. Zhanikulov, N. N., Khudyakova, T. M., Taimassov, B. T., Sarsenbayev, B. K., Dauletiarov, M. S., Kolesnikov, A. S., & Karshygayev, R. O. (2019). Receiving portland cement from technogenic raw materials of south kazakhstan. Eurasian Chemico-Technological Journal, 21(4), 333−340. DOI:10.18321/ectj890.

30. Potapov, A. I., Kulchitskii, A. A., Smorodinskii, Y. G., & Smirnov, A. G. (2020). Evaluating the error of a system for monitoring the geometry of anode posts in electrolytic cells with self-baking anode. Russian Journal of Nondestructive Testing, 56(3), 268−274. DOI:10.1134/S1061830920030080.

31. Masloboev, V. A., Seleznev, S. G., Makarov, D. V., & Svetlov, A. V. (2014). Assessment of eco-hazard of copper-nickel ore mining and processing waste. Journal of Mining Science, 50(3), 559−572. DOI:10.1134/S106273911403017X.

32. Karshigina, Z., Abisheva, Z., Bochevskaya, Y., Akcil, A., Sargelova, E., Sukurov, B., & Silachyov, I. (2018). Recovery of rare earth metals (REMs) from primary raw material: Sulphatization-leaching-precipitation-extraction. Mineral Processing and Extractive Metallurgy Review, 39(5), 319−338. DOI:10.1080/08827508.2018.1434778.

33. Aliyeva, Z., Assipova, Z., Bazarbekova, M., Mussagaliyeva, A., & Sansyzbayeva, A. (2019). Urban area planning and environment in kazakhstan’s cities: Case of almaty. Paper presented at the International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 19(5.2) 775−782. DOI:10.5593/sgem2019/5.2/ S20.097.

34. Plokhov A. S., Kharko P. A., Pashkevich M. A. Effect of tailings storage facility on surface water at copper–pyrite deposit. MIAB. Mining Inf. Anal. Bull. 2021;(4):57-68. [In Russ]. DOI: 10.25018/0236_1493_2021_4_0_57.

35. Kolesnikov, A. S., Sergeeva, I. V., Botabaev, N. E., Al’Zhanova, A. Z., & Ashirbaev, K. A. (2017). Thermodynamic simulation of chemical and phase transformations in the system of oxidized manganese ore – carbon. Izvestiya Ferrous Metallurgy, 60(9), 759−765. DOI:10.17073/0368−0797−2017−9-769−765.

36. Aliyeva, Z., Sakypbek, M., Aktymbayeva, A., Assipova, Z., & Saidullayev, S. (2020). Assessment of recreation carrying capacity of ile-alatau national park in kazakhstan. Geojournal of Tourism and Geosites, 29(2), 460−471. DOI:10.30892/gtg.29207−482.

37. Kulikova A. A., Kovaleva A. M. Use of tailings of enrichment for laying of the developed space of mines. MIAB. Mining Inf. Anal. Bull. 2021;(2–1):144–154. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-144-154.

38. Rybak, J., Adigamov, A., Kongar‐syuryun, C., Khayrutdinov, M., Tyulyaeva, Y. (2021). Renewable‐resource technologies in mining and metallurgical enterprises providing environmental safety. Minerals, 11−10, 1145. DOI: 10.3390/min11101145.

39. Rybak, J., Kongar‐Syuryun, C., Tyulyaeva. Y., Khayrutdinov, A. M. (2021). Creation of backfill materials based on industrial waste, Minerals, 11(7), 739. DOI: 10.3390/min11070739.

40. Vasilovskaya, G. V., Shevchenko, V. A., Kiselyov, V. P. (2015). The use of fluffy hydrated lime of the Krasnoyarsk chemical and metallurgical plant in the composition of road asphalt concrete. Vestnik IrGTU, 98, 3 [In Russ.].

41. Kolesnikova, O.; Syrlybekkyzy, S.; Fediuk, R.; Yerzhanov, A.; Nadirov, R.; Utelbayeva, A.; Agabekova, A.; Latypova, M.; Chepelyan, L.; Volokitina, I.; Vatin, N. I.; Kolesnikov, A.; Amran, M. Thermodynamic Simulation of Environmental and Population Protection by Utilization of Technogenic Tailings of Enrichment. Materials. 2022, 15, 6980. https://doi.org/10.3390/ma15196980.

42. Sokova, S., & Smirnova, N. (2020). The choice of durable blocking waterproofing mathematical method. Journal of Physics: Conference Series, 1425(1). DOI:10.1088/1742− 6596/1425/1/012046.

43. Nitsenko, A. V., Trebukhov, S. A., Kasymzhanova, A. K., & Burabaeva, N. M. (2018). Decomposition of a synthetic copper sulfoarsenide. Inorganic Materials, 54(7), 621−626. DOI:10.1134/S0020168518070105.

44. Kolesnikov A. S., Serikbaev B. E., Zolkin A. L., Kenzhibaeva G. S., Isaev G. I., Botabaev N. E., Shapalov Sh. K. et al. Processing of Non-Ferrous Metallurgy Waste Slag for its Complex Recovery as a Secondary Mineral Raw Material. Refractories and Industrial Ceramics. 2021. Vol. 62, no. 4, pp. 375-380. https://doi.org/10.1007/s11148-021-00611-7.

45. Romanova, I. (2018). The selecting of building insulation material by the analytic hierarchy process. IOP Conference Series: Materials Science and Engineering, 365(3). DOI:10.1088/1757−899X/365/3/032016.

46. Golov, G. V., Sitnikov, S. M., & Kalimulina, E. G. (2001). Technology for extracting the metals from dump slag. Stal’, (10), 83.

47. Lukavyj, S L, Fedorov, A N. (2012). Materials of the conference at VIAM. – M.

48. Ryabov, T V. (2000). News of ferrous metallurgy abroad, 4.

49. Kuzovkov, A. Y., Golov, G. V., Sitnikov, S. M., Merzlyakov, V. A., Kalimulina, E. G., Khabarov, V. P., & Musatova, L. B. (2000). Extraction of metal during processing the dump slags. Metallurg, (5), 44.

50. Ryabov, T V. (2004). News of ferrous metallurgy abroad, 3.

51. Trubaev, P A. (2006). Program for Calculating and Optimizing Cement Raw Material Mixes.

52. Vlasyuk, A., Zhukovskyy, V., Zhukovska, N., Pinchuk, O., & Rajab, H. (2020). Mathematical modeling of heat, mass and moisture transfer in catalytic porous media. WSEAS Transactions on Applied and Theoretical Mechanics, 15, 52−59. DOI:10.37394/232011.2020.15.8.

53. Andrianov, I.K, Stankevich, A. V. (2019). Finite-element model of the shell-shaped half-pipes forming for blanks behavior investigating during corrugating at the stamping. International Science and Technology Conference «East Conf 2019», 8725322I.

54. Kongar-Syuryun, Ch., Ubysz, A., Faradzhov, V. (2021). Models and algorithms of choice of development technology of deposits when selecting the composition of the backfilling mixture, IOP Conf. Series: Earth and Environmental Science, 684(1), 012008. DOI: 10.1088/1755−1315/684/1/012008.

55. Vlasyuk, A. P., Zhukovska, N. A., Zhukovskyy, V. V. (2020). Mathematic and computer modeling of cohesion effect forces on spatial deformation processes of soil massif. Math. Model. and Comput., 1. DOI: 10.23939/mmc2020.01.196; Andrianov, I. K., Belykh, S. V. (2019). The finite element simulation of the stamping die optimal topology. International Science and Technology Conference «East Conf 2019». 8725410.

56. Litvinova T. E., Suchkov D. V. Comprehensive approach to the utilisation of technogenic waste from the mineral resource complex. MIAB. Mining Inf. Anal. Bull. 2022;(6–1):331-348. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_331.

57. Pelipenko M. V., Balovtsev S. V., Aynbinder I. I. Integrated accident risk assessment in mines. MIAB. Mining Inf. Anal. Bull. 2019;(11):180-192. DOI: 10.25018/0236-14932019-11-0-180-192. [In Russ].

58. Ustinov, A. Y., Kulikov, R. S., Zakharova, E. V., et al. (2018). Vehicles Cooperative Navigation Using GNSS for Coordinates and DSRC for Mutual Heading. 12th International Scientific and Technical Conference «Dynamics of Systems, Mechanisms and Machines» (Dynamics), 1−5. DOI:10.1109/Dynamics.2018.8601468.

59. Lisin, E., Kurdiukova, G. (2021). Energy Supply System Development Management Mechanisms from the Standpoint of Efficient Use of Energy Resources. IOP Conference Series: Earth and Environmental Science, 666, 062090. DOI:10.1088/1755−1315/666/6/062090.

60. Lisin, E., Rogalev, N., Okley, P. (2019). The impact model of the production capacities structure of the energy system and the regional energy security. Terra Economicus, 17(2), 96−111. DOI:10.23683/2073−6606−2019−17−2-96−111.

61. Rogalev, A. N., Sokolov, V. P., Sokolova, J. V., et al. (2018). Methodology of reasonable application of digital technology for creating competitive high-tech products. International Journal of Mechanical Engineering and Technology, 9(10), 670−678.

62. Berezovskaya, N. V., Bliznyuk, V. V., Parshin, V.A., et al. (2021). Optimization of power supply mode of single-mode laser diode by ratio of current and integral spectrum parameter. Journal of Physics: Conference Series, 2127(1), 012045. DOI:10.1088/1742−6596/2127/1/012045.

63. Tulsky, V., Shevlyugin, M., Korolev, A., et al. (2020). Application of ETAP™ eTraX™ software package for digital simulation of distribution network that feeds an AC traction power supply system. E3S Web of Conferences, 209, 07011. DOI: 10.1051/ e3sconf/202020907011.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.