Back to search

Experience of determining regional ecologically safe copper concentrations in soils at a copper mine

Mines greatly affect the environment, in particular, in adjacent areas. An important objective of the modern geoecology is to develop ecological standards of pollutant limits for the environmental objects in the neighborhood of contamination sources. The aim of this study is to determine regional ecologically safe concentrations of total copper in soils in the areas of a copper mining and processing plant in the Caucasus (Urup GOK, Karachay–Cherkessia), such that the overrun of these concentrations leads to malfunction of natural ecosystems. With that end in view, copper pollution was modeled in four types of soils in the closest vicinity of the test mining and processing plant. The scope of the analyses embraced the impact exerted by copper contents of 100, 1000 and 10000 mg/kg on the most sensitive and informative parameters of soils (bacterial number, enzyme strength, plant growth). The ecologically safe concentrations of total copper in soils is determined by the rate of drop in the index of biological integrity of soils, which is reflective of the damage of ecological functions and services of soils. The found regional ecologically safe concentrations of total copper in soils in the area of the copper mining and processing plant are as follows: leached mountain black earth—150 mg/kg; rendzina—120 mg/kg; brown forest weakly undersaturated soil—110 mg/kg; mountain meadow black earth-like soil—100 mg/kg. The proposed ecological standards can be used to evaluate and standardize pollution of natural ecosystems. The application ranges of the standards embrace the whole distribution areas of the listed types of soils, except for the land of agricultural designation and residential areas where the relatively allowable copper concentrations are effective. The use of the ecological standards can promote more efficient territorial management at Urup GOK.

Keywords: copper mining and processing plants, ecological standards, pollution, copper, ecological soil functions, Caucasus.
For citation:

Moshchenko D. I., Kuzina A. A., Kolesnikov S. I., Kazeev K.Sh. Experience of determining regional ecologically safe copper concentrations in soils at a copper mine. MIAB. Mining Inf.Anal. Bull. 2023;(11):102-114.[InRuss]. DOI:10.25018/0236_1493_2023_11_0_102.

Acknowledgements:

The study was supported under Priority 2030 Program for the South Federal University Project on Creation of Laboratory of Ecobiotechnologies for Soil Diagnostics and Health, Project No. SP-12-23-01, by the Ministry of Science and Higher Education of the Russian Federation, State Contact No. FENW-2023-0008, by the International Soil Health Lab at the South Federal University, Agreement No. 075-15-2022-1122, and by the President of Russia, Grants Nos. MK-2688.2022.1.5 and NSH-449.2022.5.

Issue number: 11
Year: 2023
Page number: 102-114
ISBN: 0236-1493
UDK: 57.044; 631.46
DOI: 10.25018/0236_1493_2023_11_0_102
Article receipt date: 06.05.2022
Date of review receipt: 06.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

D.I. Moshchenko1, Graduate Student, e-mail: dimoshenko@sfedu.ru, ORCID ID: 0000-0001-7536-1538,
А.А. Kuzina1, Cand. Sci. (Biol.), Senior Researcher, e-mail: nyuta_1990@mail.ru, ORCID ID: 0000-0001-8816-5288,
S.I. Kolesnikov1, Dr. Sci. (Agric.), Professor, Head of Chair, e-mail: kolesnikov@sfedu.ru, ORCID ID: 0000-0001-5860-8420,
K.Sh. Kazeev1, Dr. Sci. (Geogr.), Professor, е-mail: kamil_kazeev@mail.ru, ORCID ID: 0000-0002-0252-6212,
1 D.I. Ivanovsky Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia.

 

For contacts:

А.А. Kuzina, e-mail: nyuta_1990@mail.ru.

Bibliography:

1. Alborov I. D., Burdzieva O. G., Tedeeva F. G., Gegelashvili M. V. Ecological stress in nonferrous metal mining regions in the North Caucasus. MIAB. Mining Inf. Anal. Bull. 2020, no. 11-1, pp. 18—31. [In Russ]. DOI: 10.25018/0236-1493-2020-111-0-18-31.

2. Mihaljevič M., Baieta R., Ettler V., Vaněk A., Kříbek B., Penížek V., Drahota P., Trubač J., Sracek O., Chrastný V., Mapani B. S. Tracing the metal dynamics in semi-arid soils near mine tailings using stable Cu and Pb isotopes. Chemical Geology. 2019, vol. 515, pp. 61—76. DOI: 10.1016/j.chemgeo.2019.03.026.

3. Dulya O. V., Bergman I. E., Kukarskih V. V., Vorobeichik E. L., Smirnov G. Y., Mikryukov V. S. Pollution-induced slowdown of coarse woody debris decomposition differs between two coniferous tree species. Forest Ecology and Management. 2019, vol. 448, pp. 312—320. DOI: 10.1016/j.foreco.2019.06.026.

4. Antoninova N. Yu., Sobenin A. V., Shubina L. A. Assessment of usability of industrial waste in construction of geochemical barriers. MIAB. Mining Inf. Anal. Bull. 2020, no. 12, pp. 78—88. [In Russ]. DOI: 10.25018/0236-1493-2020-12-0-78-88.

5. Salpagarova S. I., Salpagarova Z. I. The Environmental Impacts of Urupsky Mining Complex. Dagestan state pedagogical university journal. Natural and exact sciences. 2018, vol. 12, no. 1, pp. 88—93. [In Russ].

6. Kabata-Pendias A., Pendias H. Trace elements in soils and plants. CRC. Taylor & Francis Group, Boca Raton, 2011.

7. D'yachenko V. V., Matasova I. Y. Regional clarkes of chemical elements in soils of southern European Russia. Eurasian Soil Science. 2016, no. 10, pp. 1159—1166. [In Russ]. DOI: 10.1134/ S1064229316100069.

8. Antoniadis V., Shaheen S., Levizou E., Shahid M., Niazi N., Vithanage M., Ok Y., Bolan N., Rinklebe J. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: are they protective concerning health risk assessment? A review. Environment International. 2019, vol. 127, pp. 819—847. DOI: 10.1016/j.envint.2019.03.039.

9. Neaman A., Yáñez K. Phytoremediation of soils contaminated by copper smelting in Chile: Results of a decade of research. Eurasian Soil Science. 2021, no. 12. C. 1564—1572. [In Russ]. DOI: 10.1134/S1064229321120085.

10. Kolesnikov S., Timoshenko А., Minnikova T., Tsepina N., Kazeev K., Akimenko Y., Zhadobin A., Shuvaeva V., Rajput V. D., Mandzhieva S., Sushkova S., Minkina T., Dudnikova T., Mazarji M., Alamri S., Siddiqui M. H., Kumar Singh R. Impact of metal-based nanoparticles on cambisols microbial functionality, enzyme activity and plant growth. Plants. 2021, vol. 10, no. 10, article 2080. DOI: 10.3390/plants10102080.

11. Yakovlev A. S., Evdokimova M. V. Approaches to the regulation of soil pollution in russia and foreign countries. Eurasian Soil Science. 2022, no. 5, pp. 631—641. [In Russ]. DOI: 10.31857/S0032180X22050136.

12. Araújo E., Strawn D. G., Morra M., Moore A., Ferracciú Alleoni L. R. Association between extracted copper and dissolved organic matter in dairy-manure amended soils. Environmental Pollution. 2019, vol. 246, pp. 1020—1026. DOI: 10.1016/j.envpol.2018.12.070.

13. Ju W., Liu L., Fang L., Cui Y., Duan C., Wu H. Impact of co-inoculation with plantgrowth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety. 2019, vol. 167, pp. 218—226. DOI: 10.1016/j.ecoenv.2018.10.016.

14. Kolesnikov S. I., Kazeev K. Sh., Timoshenko A. N., Akimenko Yu. V., Myasnikova M. A. Ecotoxicity of copper, nickel, and zinc nanoparticles assessment on the basis of biological indicators of chernozems. Eurasian Soil Science. 2019, no. 8, pp. 986—992. [In Russ]. DOI: 10.1134/ S106422931908009X.

15. Kolesnikov S. I., Kazeev K. Sh., Akimenko Yu. V. Development of regional standards for pollutants in the soil using biological parameters. Environmental Monitoring And Assessment. 2019, vol. 191, no. 9, pp. 544. DOI: 10.1007/s10661-019-7718-3.

16. Kolesnikov S., Minnikova T., Kazeev K., Akimenko Y., Evstegneeva N. Assessment of the ecotoxicity of pollution by potentially toxic elements by biological indicators of haplic chernozem of Southern Russia (Rostov region). Water, Air, and Soil Pollution. 2022, vol. 233, no. 1, pp. 18. DOI: 10.1007/s11270-021-05496-3.

17. Nazir F., Hussain A., Fariduddin Q. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere. 2019, vol. 230, pp. 544—558. DOI: 10.1016/j.chemosphere.2019.05.001.

18. Zeng Q., Ling Q., Wu J., Yang Z., Liu R., Qi Y. Excess copper-induced changes in antioxidative enzyme activity, mineral nutrient uptake and translocation in sugarcane seedlings. Bulletin of Environmental Contamination and Toxicology. 2019, vol. 103, no. 6, pp. 834—840. DOI: 10.1007/s00128-019-02735-6.

19. Shabbir Z., Sardar A., Shabbir A., Abbas G., Shamshad S., Khalid S., Ghulam Murtaza N., Dumat C., Shahid M. Copper uptake, essentiality, toxicity, detoxification, and risk assessment in soil-plant environment. Chemosphere. 2020, vol. 259, article 127436. DOI: 10.1016/j.chemosphere.2020.127436.

20. Saleem M. H., Kamran M., Zhou Y., Parveen A., Rehman M., Ahmar S., Liu L. Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. Journal of Environmental Management. 2020, vol. 257, article 109994. DOI: 10.1016/j.jenvman.2019.109994.

21. Guo Z., Megharaj M., Beer M., Ming H., Rahman M. M., Wu W., Naidu R. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Bioresource Technology. 2009, vol. 100, no. 17, pp. 3831—3836. DOI: 10.1016/j.biortech.2009.02.043.

22. Fokina A. I., Ashikhmina T. Ya., Domracheva L. I., Gornostaeva E. A., Ogorodnikova S. Yu. Heavy Metals as a Factor of Microorganisms Metabolism Changes (Review). Theoretical and applied ecology. 2015, no. 2, pp. 5—17. [In Russ].

23. Fernández-Calviño D., Nóvoa-Muñoz J. C., López-Periago E., Arias-Estévez M. Changes in copper content and distribution in young, old and abandoned vineyardacid soils due to land use changes. Land Degradation and Development. 2008, vol. 19, pp. 165—177. DOI: 10.1111/ j.1398-9995.2007.01620.

24. Shein E. V. Granulometric composition of soils: methods of laser difraction and sedimentometry, their comparison and use. Eurasian Soil Science. 2009, no. 3, pp. 309—317. [In Russ].

25. Minkina T. M., Motuzova G. V., Mandzhieva S. S., Nazarenko O. G. Ecological resistance of the soil-plant system to contamination by heavy metals. Journal of Geochemical Exploration. 2012, vol. 123, pp. 33—40.

26. Dobrovol'skiy G. V., Nikitin E. D. Funktsii pochv v biosfere i ekosistemakh (ekologicheskoe znachenie pochv) [Functions of soils in the biosphere and ecosystems (ecological significance of soils)], Moscow, Nauka, 1990, 261 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.