A case history of modeling elastic hysteresis of different-genotype rocks based on the Preisach model

For improving reliability of data required for the numerical geomechanical models, and for having more correct relations between properties of samples and in-situ properties of rocks for modeling production processes in mining, it is important to take into account parameters of elastic hysteresis. One of the most widespread models of elastic hysteresis is currently the Preisach–Mayergoyz (PM) model which describes the nonlinearly elastic behavior of structurally nonuniform media with the discrete memory, such as rocks (geomaterials). In this connection, the aim of this study is modeling elastic hysteresis for rocks of different genesis. The research method is MathCAD-based mathematical modeling of deformation of rock samples under conditions of elastic hysteresis. The article describes the elements and the results of the constructed mathematical model of elastic hysteresis based on the Preisach model. It is found that hysteron distributions in the PM space model observably differ in the samples of differentgenotype rocks. In this fashion, it is possible to obtain an adequate valuation of the degree of hysteresis in rocks having multi-scale faulted internal structure using the proposed model.

Keywords: rock samples, modeling, elastic hysteresis, hysteresis loop, hysteresis model, Preisach Model, Preisach–Mayergoyz space, hysteretic nonlinearity, rock structure.
For citation:

Vysotin N. G., Vinnikov V. A. A case history of modeling elastic hysteresis of different-genotype rocks based on the Preisach model. MIAB. Mining Inf. Anal. Bull. 2023; (11):5-16. [In Russ]. DOI: 10.25018/0236_1493_2023_11_0_5.

Acknowledgements:
Issue number: 11
Year: 2023
Page number: 5-16
ISBN: 0236-1493
UDK: 622.023.25+530.152.1
DOI: 10.25018/0236_1493_2023_11_0_5
Article receipt date: 03.05.2023
Date of review receipt: 15.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

N.G. Vysotin1, Senior Lecturer, e-mail: n.vysotin@misis.ru, ORCID ID: 0000-0002-3011-053X,
V.A. Vinnikov1, Dr. Sci. (Phys. Mathem.), Assistant Professor, Head of Chair, e-mail: evgeny.vinnikov@gmail.com, Scopus Author ID: 23037295300,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

N.G. Vysotin, e-mail: e-mail: n.vysotin@misis.ru.

Bibliography:

1. Moses P. A new object-oriented simulation tool for modeling preisach-based magnetic hysteresis nonlinearities. WSEAS Transactions on Systems. 2018, vol. 17, pp. 24—35.

2. Wawrzala P. Application of a preisach hysteresis model to the evaluation of PMN-PT ceramics properties. Archives of Metallurgy and Materials. 2013, vol. 58, no. 4, pp. 1347—1350.

3. Lott M., Remillieux M. C., Garnier V., Le Bas P.-Y., Ulrich T. J., Payan C. Nonlinear elasticity in rocks. A comprehensive three-dimensional description. Physical Review Materials. 2017, vol. 1, no. 2, article 023603, pp. 1—10. DOI: 10.1103/PhysRevMaterials.1.023603.

4. Wang X., Song L., Gao X., Chang X. Effect of loading rate on the nonlinear elastic response of concrete. European Journal of Environmental and Civil Engineering. 2021, vol. 25, no. 5, pp. 909—923. DOI: 10.1080/19648189.2018.1553209.

5. Tong L. H., Yu Y., Xu C. Nonlinear dynamic behavior of cemented granular materials under impact loading. International Journal of Mechanical Sciences. 2019, vol. 151, pp. 70—75. DOI: 10.1016/j.ijmecsci.2018.11.015.

6. Bittner J. A., Popovics J. S. Mechanistic diffusion model for slow dynamic behavior in materials. Journal of the Mechanics and Physics of Solids. 2021, vol. 150, article 104355. DOI: 10.1016/j.jmps.2021.104355.

7. Shokouhi P. Rivière J., Guyer R. A., Johnson P. A. Slow dynamics of consolidated granular systems: Multi-scale relaxation. Applied Physics Letters. 2017, vol. 111, no. 25, article 251604. DOI: 10.1063/1.5010043.

8. Averbakh V. S., Bredikhin V. V., Kon’kov A. I., Lebedev A. V., Manakov S. A., Talanov V. I. Acoustic nonlinearity of granite: Comparison of data of field and laboratory experiments. Akusticheskij Zhurnal. 2016, vol. 62, no. 3, pp. 363—368. [In Russ]. DOI: 10.7868/S0320791916030023.

9. Mashinskii E. I. Amplitude-dependent hysteresis of wave velocity in rocks in wide frequency range: An experimental study. Mining Science and Technology (Russian Federation). 2021, vol. 6, no. 1, pp. 23—30. DOI: 10.17073/2500-0632-2021-1-23-30.

10. Sens-Schönfelder C., Snieder R., Li X. A model for nonlinear elasticity in rocks based on friction of internal interfaces and contact aging. Geophysical Journal International. 2019, vol. 216, no. 1, pp. 319—331. DOI: 10.1093/gji/ggy414.

11. Andreev M. V., Askarov A., Suvorov A. Design of the magnetic hysteresis mathematical model based on Preisach theory. Electrical Engineering. 2019, vol. 101, no. 4, pp. 3—9. DOI: 10.1007/s00202-018-0751-3.

12. Ling W., Ba J., Carcione J. M., Zhang L. Poroacoustoelasticity for rocks with a dual-pore structure. Geophysics. 2021, vol. 86, no. 1, pp. MR17—MR25. DOI: 10.1190/geo2020-0314.1.

13. Sajeva A., Capaccioli S. Including Plastic Strain Into the Discrete Preisach-Mayergoyz Space: Application to Granular Media. Journal of Geophysical Research: Solid Earth. 2019, vol. 124, no. 11, pp. 10983—10998. DOI: 10.1029/2019JB017833.

14. Tang J., Wang H., Li J., Su W., Guan J. Nonlinear hysteretic evolution characteristics of rock deformation and permeability. Shiyou Diqiu Wuli Kantan / Oil Geophysical Prospecting. 2017, vol. 52, no. 3, pp. 509—515. DOI: 10.13810/j.cnki.issn.1000-7210.2017.03.013.

15. Sajeva A., Capaccioli S. A discrete formulation of the elasto-plastic Preisach-Mayergoyz space with variable pressure step. 81st EAGE Conference and Exhibition 2019, London. 2019. DOI: 10.3997/2214-4609.201901031.

16. Sajeva A., Filograsso R., Capaccioli S. Including plastic behaviour in the Preisach-Mayergoyz space to find static and dynamic bulk moduli in granular media. 2018 SEG International Exposition and Annual Meeting, SEG 2018, Anaheim. 2019, pp. 3517—3521. DOI: 10.1190/ segam2018-2994837.1.

17. Danilin A. N., Vinogradov A. A., Karnet Yu. N. Models of hysteresis, a brief survey. Mechanics of composite materials and structures. 2016, vol. 22, no. 2, pp. 295—308.

18. Zsurzsan T-G., Andersen M. A. E., Zhang Z., Andersen N. A. Preisach model of hysteresis for the Pieazoelectric Actuator Drive. Proceedings of the 41st Annual Coference of the IEEE Industrial Electronics Society IEEE. 2015, pp. 2778—2783. DOI: 10.1109/iecon.2015.7392524.

19. Aleshin V. V., Van Den Abeele K. Preisach description for solids with frictional cracks. International Journal of Non-Linear Mechanics. 2018, vol. 104, pp. 28—38.

20. Eichler J., Novak M., Kosek M. Experimental — Numerical Method for Identification of Weighting Function in Preisach Model for Ferromagnetic Materials. 21st International Conference on Applied Electronics, AE 2016. 2016, pp. 75—80.

21. Khandelwal A., Chakrapani S. K. Nonclassical nonlinear elasticity of crystalline structures. Physical Review E. 2021, vol. 104, no. 4, article 045002. DOI: 10.1103/PhysRevE.104.045002.

22. Kus V., Dolejs E. Elasticity index evaluation based on le Cam divergence and kernel density estimator in PM space. Journal of Physics: Conference Series. 2021, vol. 1730, no. 1, article 012008. DOI: 10.1088/1742-6596/1730/1/012008.

23. Pecorari C. Modeling the elasto-acoustic hysteretic nonlinearity of dry Berea sandstone. Wave Motion. 2015, vol. 52, pp. 66—80. DOI: 10.1016/j.wavemoti.2014.09.001.

24. Renaud G., Rivière J., Larmat C., Rutledge J. T., Lee R. C., Guyer R. A., Stokoe K., Johnson P. A. In situ characterization of shallow elastic nonlinear parameters with Dynamic Acoustoelastic Testing. Journal of Geophysical Research: Solid Earth. 2014, vol. 119, no. 9, pp. 6907—6923. DOI: 10.1002/2013JB010625.

25. Tencate J. A. Nonlinear resonant ultrasound spectroscopy: Assessing global damage. Nonlinear ultrasonic and vibro-acoustical techniques for nondestructive evaluation. Springer International Publishing. 2018, pp. 89—101. DOI: 10.1007/978-3-319-94476-0_2.

26. Vysotin N. G. The elastic hysteresis of rocks of different nature. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-2, pp. 72—79. [In Russ]. DOI: 10.25018/0236_1493_2022_52_0_72.

27. Belozerov I. P., Gubaidullin M. G. Concept of technology for determining the permeability and porosity properties of terrigenous reservoirs on a digital rock sample model. Journal of Mining Institute. 2020, vol. 244, pp. 402—407. DOI: 10.31897/PMI.2020.4.2.

28. Vysotin N. G. The specific non-linear elastic hysteresis of rocks under cyclic uniaxial Tension. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 148—157. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_148.

29. Vinnikov V. A., Vysotin N. G. Method of testing on the static module for the elasticity of mineral rocks with using the results of laser-ultrasonic spectroscopy. MIAB. Mining Inf. Anal. Bull. 2018, no. S1, pp. 90—101. [In Russ]. DOI: 10.25018/0236-1493-2018-1-1-90-101.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.