Practical implementation of the multiple dynamic impact crushing method in crushers

In the context of increasing demands on the efficiency of mining processes, the optimization of crushing and crushing of mineral raw materials is becoming a key task. The main goals are to reduce energy consumption, reduce the metal consumption of equipment and improve the quality of the final product. These aspects are critically important in the context of the global trend towards resource conservation and the ecology of production. An innovative crushing method based on multiple dynamic impact is being developed at the N.V. Chersky Institute of Mining of the North of the Siberian Branch of the Russian Academy of Sciences. The use of multiple impact crushing, in addition to a high degree of crushing, also provides selective disclosure of mineral grains without over-grinding, which significantly affects the extraction of valuable components. This method is implemented in crushing machines DKD-300 and RD-MDV-900, which confirm their high efficiency in processing gold-bearing, fluorite and kimberlite ores. Studies on the disclosure of monomineral useful components during crushing in the DKD-300 apparatus have shown that up to 47% of gold with a grain size of more than 100 microns, up to 70% of fluorite, and the preservation of diamond crystals of up to 90% are revealed in crushing products. The introduction of this crushing method opens up new opportunities for optimizing resources and increasing the competitiveness of enterprises.

Keywords: crushing, crusher, disintegration, ore preparation, beneficiation, granulometric characteristics, mineral liberation, crushing degree, specific energy consumption.
For citation:

Matveev A. I., Lvov E. S. Practical implementation of the multiple dynamic impact crushing method in crushers. MIAB. Mining Inf. Anal. Bull. 2025;(9-1):114-125. [In Russ]. DOI: 10.25018/0236_1493_2025_91_0_114.

Acknowledgements:
Issue number: 9-1
Year: 2025
Page number: 114-125
ISBN: 0236-1493
UDK: 622.73
DOI: 10.25018/0236_1493_2025_91_0_114
Article receipt date: 03.06.2025
Date of review receipt: 27.07.2025
Date of the editorial board′s decision on the article′s publishing: 10.08.2025
About authors:

A.I. Matveev1, Dr. Sci. (Eng.), Chief Researcher, e-mail: andrei.mati@yandex.ru, ORCID ID: 0000-0002-4298-5990,
E.S. Lvov1, Researcher, e-mail: lvoves@bk.ru, ORCID ID: 0000-0002-3843-0714,
1 Chersky Mining Institute of the North, Siberian Branch, Russian Academy of Sciences, Yakutsk, 677980, Russia.

 

For contacts:

A.I. Matveev, e-mail: andrei.mati@yandex.ru.

Bibliography:

1. Chanturia V. A., Bocharov V. A. Current state and main directions of development of technology for complex processing of mineral raw materials of non-ferrous metals. Tsvetnye Metally. 2016, no. 11, pp. 11—18. [In Russ]. DOI: 10.17580/tsm.2016.11.01.

2. Kaplunov D. R., Rylnikova M. V., Radchenko D. N. Expansion of the raw material base of mining enterprises based on the integrated use of mineral resources of deposits. Gornyi Zhurnal. 2013, no. 12, pp. 29—33. [In Russ].

3. Zongxian Zhang, De-Feng Hou, Adeyemi Aladejare, Toochukwu Malachi Ozoji, Yang Qiao World mineral loss and possibility to increase ore recovery ratio in mining production. International Journal of Mining, Reclamation and Environment. 2021, vol. 35, no. 9, pp. 670—691.

4. Espinoza R. D., Rojo J. Towards sustainable mining (Part I): Valuing investment opportunities in the mining sector. Resources Policy. 2017, vol. 52, pp. 7—18.

5. Ozhogina E. G., Kotova O. B. Technological mineralogy in solving problems of complex processing of mineral raw materials. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 2, pp. 48. [In Russ].

6. Oganesyan L. V., Mirlin E. G. The problem of depletion of mineral resources of the earth’s crust. Russian Mining Industry Journal. 2019, no. 6, pp. 100—105. [In Russ].

7. Xiaolong Zhang, Yonghong Qin, Jianping Jin, Yanjun Li, Peng Gao High-efficiency and energyconservation grinding technology using a special ceramic-medium stirred mill: A pilot-scale study. Powder Technology. 2022, vol. 396, Part A, pp. 354—365. DOI: 10.1016/j.powtec.2021.10.056.

8. Dmitrak Yu. V. On the concept of energy intensity of grinding solid materials in mills. News of the Tula state university. Sciences of Earth. 2021, no. 1, pp. 138—147. [In Russ].

9. Bortnowski P., Gładysiewicz L., Król R., Ozdoba M. Energy efficiency analysis of copper ore ball mill drive systems. Energies. 2021, vol. 14, no 6, article 1786. DOI: 10.3390/en14061786.

10. Ballantyne G. R., Powell M. S., Tiang M. Proportion of energy attributable to comminution. Proceedings of the 11th Australasian Institute of Mining and Metallurgy Mill Operator’s Conference. 2012, pp. 25—30.

11. Chaimae Loudari, Cherkaoui Moha, Rachid Bennani, Imad El Harraki, Fares Nabil Omar, El Adnani M., El Hassan Abdelwahed, Intissar Benzakour, François Bourzeix, Salah Baïna Predicting grinding mill power consumption in mining: A comparative study. 7th IEEE Congress on Information Science and Technology (CiSt). 2023, pp. 395—399.

12. Peng Gao, Wentao Zhou, Yuexin Han, Yanjun Li, Wenli Ren Enhancing the capacity of largescale ball mill through process and equipment optimization: An industrial test verification. Advanced Powder Technology. 2020, vol. 31, no. 5, pp. 2079—2091. DOI: 10.1016/j.apt.2020.03.001.

13. Urakaev F.Kh., Shumskaya L. G., Kirillova E. A., Kondratiev S. A. Improving the technology of fine grinding of technogenic raw materials based on their dosed staged destruction. Journal of Mining Sciences. 2020, no. 5, pp. 165—175. [In Russ].

14. Mamonov S. V., Zakirnichny V. N., Metelev A. A., Dresvyankina T. P., Volkova S. V., Kuznetsov V. A., Ziyatdinov S. V. Promising technologies for the disclosure of mineral raw materials in preparation for flotation enrichment. Journal of Mining Sciences. 2019, no. 5, pp. 158—169. [In Russ].

15. Golik V. I., Kozhiev H. Kh., Golodov M. A., Armeyskov V. N. Study of the properties of rocks during crushing and grinding in mechanical mills. News of the Ural State Mining University. 2021, no. 2(62), pp. 81—87. [In Russ]. DOI: 10.21440/2307-2091-2021-2-81-87.

16. Shulgina K. A., Kuzina L. N., Mironova Zh. V., Konev A. V., Korotkevich V. A. Criteria for the feasibility of using pre-enrichment technologies for the modernization of mining enterprises. Business. Education. Law. 2021, no. 3(56), pp. 93—97. [In Russ]. DOI: 10.25683/VOLBI.2021.56.320.

17. Zav'yalov S. S., Mamonov R. S. Study of dry combined technology for preliminary enrichment of gold ore. Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya: Materialy XXVII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, provodimoy v ramkakh XX Ural'skoy gornopromyshlennoy dekady [Scientific foundations and practice of processing ores and technogenic raw materials: Proceedings of the XXVII International scientific and technical conference held within the framework of the XX Ural Mining Decade], Ekaterinburg, 2022, pp. 244—250. [In Russ].

18. Matveyev A. I., Lvov E. S. Development of a methodology for determining the degree of disintegration of geomaterials in the process of multiple impact crushing. Journal of Mining Sciences. 2020, no. 2, pp. 137—143. [In Russ].

19. Matveev A. I., Lvov E. S., Zaikina A. V. Features of mechanical destruction of gold-bearing ores of the Gurbey deposit by impact dynamic effects. Journal of Mining Sciences. 2021, no. 2, pp. 141—151. [In Russ].

20. Matveev A. I., Lvov E. S., Osipov D. A., Grigoriev Yu.M., Savitsky L. V. Research of the crushing process of kimberlite ores of the Zarnitsa pipe in a combined impact crusher. Gornyi Zhurnal. 2012, no. 12, pp. 66—70. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.