Velocity variations of Pand S-waves in sedimentary rock samples under thermobaric effects

The article describes studies into variation of propagation parameters of Pand S-waves in sedimentary rocks versus temperature, pressure and structural features. In the tests, samples from five groups of sedimentary rocks were subjected to uniaxial loading with simultaneous heating. At each stage of thermobaric treatment, ultrasonic Pand S-wave measurements were performed. Using the obtained data, the incremental velocities of elastic waves with increasing axial load were calculated, and the temperature effect on the increments was assessed. It is found that the increasing load results in the increased velocities of elastic waves proportionally with the porosity of the samples and inversely proportionally to the density of the samples. Heating elevates sensitivity of ultrasound parameters relative to the change in the axial pressure value. The spectrum analysis of the recorded signals reveals that the spectrum maximum shifts with increasing temperature, which is reflective of crack formation. The rate of cracking is higher in denser rocks. The resultant patterns can be used in development of efficient ultrasonic methods for the stress–strain monitoring in rock mass.

Keywords: thermobaric effects, sedimentary rocks, porosity, ultrasound, control, stress state.
For citation:

Nikolenko P. V., Shkuratnik V. L., Chepur M. D. Velocity variations of Pand S-waves in sedimentary rock samples under thermobaric effects. MIAB. Mining Inf. Anal. Bull. 2021;(7):5-13. [In Russ]. DOI: 10.25018/0236_1493_2021_7_0_5.


This work was financially supported by the Russian Foundation for Basic Research (Project No. 19-05-00152).

Issue number: 7
Year: 2021
Page number: 5-13
ISBN: 0236-1493
UDK: 622.02:539.2
DOI: 10.25018/0236_1493_2021_7_0_5
Article receipt date: 22.04.2021
Date of review receipt: 14.05.2021
Date of the editorial board′s decision on the article′s publishing: 10.06.2021
About authors:

P.V. Nikolenko1, Cand. Sci. (Eng.), Assistant Professor, e-mail:,
V.L. Shkuratnik1, Dr. Sci. (Eng.), Professor,
M.D. Chepur1, Graduate Student, e-mail:,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

P.V. Nikolenko, e-mail:


1. Nazarova L. A., Nazarov L. A., Golikov N. A. Evaluation of the rheological properties of reservoir rocks of the Bazhenov formation according to the data of thermobaric tests. Fizikotekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017, no. 3, pp. 22—28. [In Russ].

2. Takato T., Masanobu O. Changes in crack density and wave velocity in association with crack growth in triaxial tests of Inada granite. Journal of Geophysical Research. 2005. vol. 110, no. 5, pp. 1—14.

3. Li H., Dong Z., Yang Y., Chen M., Jing W. Experimental study of damage development in salt rock under uniaxial stress using ultrasonic velocity and acoustic emissions. Applied Sciences (Switzerland). 2018. vol. 8, рр. 1—14.

4. Garia S., Pal A. K., Ravi K., Nair A. M. Laboratory assessment on factors controlling the acoustic properties of carbonates. A case study from Bombay off-shore. Journal of Petroleum Science and Engineering. 2021. vol. 203.

5. Sarout J. Impact of pore space topology on permeability, cut-off frequencies and validity of wave propagation theories. Geophysical Journal International. 2012. vol. 189, no. 1, pp. 481—492.

6. Tian J., Wang E. Ultrasonic method for measuring in-situ stress based on acoustoelasticity theory. Chinese Journal of Rock Mechanics and Engineering. 2006. vol. 25, pp. 3719—3724.

7. Gladwin M. T., Stagey F. D. Ultrasonic pulse velocity as a rock stress sensor. Tectonophysics. 1974, vol. 21, no. 1-2, pp. 39—45.

8. Wang Y., Li C. H. Investigation of the Pand S-wave velocity anisotropy of a Longmaxi formation shale by real-time ultrasonic and mechanical experiments under uniaxial deformation. Journal of Petroleum Science and Engineering. 2017, vol. 158, pp. 253—267.

9. Punturo R., Kern H., Cirrincione R., Mazzoleni P., Pezzino A. Pand S-wave velocities and densities in silicate and calcite rocks from the Peloritani Mountains, Sicily (Italy): The effect of pressure, temperature and the direction of wave propagation. Tectonophysics. 2005, vol. 409, no. 1-4, pp. 55—72.

10. Scheu B., Kern H., Spieler O., Dingwell D. B. Temperature dependence of elastic Pand S-wave velocities in porous Mt. Unzendacite. Journal of Volcanology and Geothermal Research. 2006, vol. 153, no. 1-2 spec. iss., pp. 136—147.

11. Motra H. B., Zertani S. Influence of loading and heating processes on elastic and geomechanical properties of eclogites and granulites. Journal of Rock Mechanics and Geotechnical Engineering. 2018. vol. 10, no. 1, pp. 127—137.

12. Nikolenko P. V., Shkuratnik V. L. Laboratory setup for ultrasonic testing of rock samples in variable temperature and pressure conditions. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 89—96. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-89-96.

13. Zheng G. P., Zhao X. D. Liu J. P., Li Y. H. Experimental study on change in acoustic wave velocity when rock is loading. Journal of Northeastern University. 2009. vol. 30, no. 8, pp. 1197—1200.

14. Katsuki D., Gutierrez M., Almrabat A. Stress-dependent elastic wave velocity of microfractured sandstone. International Journal for Numerical and Analytical Methods in Geomechanics. 2014. vol. 38, no. 5, pp. 441—456.

15. Chen X., Xu Z. The ultrasonic P-wave velocity-stress relationship of rocks and its application. Bulletin of Engineering Geology and the Environment. 2017. vol. 76, no. 2, pp. 661—669.

16. Nikolenko P. V. Experimental studies into temperature and pressure effect on the quality and fracture of rock samples. MIAB. Mining Inf. Anal. Bull. 2020, no. 11, pp. 70—78. [In Russ]. DOI: 10.25018/0236-1493-2020-11-0-70-78.

17. Kern H. Elastic wave velocities and constants of elasticity of rocks at elevated pressures and temperatures. Landolt-Boernstein, 1982, pp. 99—140.

18. He W., Wang C., Shi W.-F., Ning J.-G., Zhao K. Evaluation of anchorage quality of rock bolts using ultrasoinc guided wave. Transaction of Beijing Institute of Technology. 2017, vol. 37, no. 6, pp. 567—572.

19. Remy J. M., Bellanger M., Homand-Etienne F. Laboratory velocities and attenuation of Pwaves in limestones during freeze-thaw cycles. Geophysics. 1994, vol. 59, no. 2, pp. 245—251.

20. Ren W., Xu J, Zhang Z., Liu Y. Wavelet packet analysis on acoustic spectral characteristics of geopolymeric concrete after elevated temperature. Journal of Building Materials. 2014, vol. 17, no. 2, pp. 284—290.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.