Design and operation features of gas drainage pipelines made of different materials

Authors: Malashkina V.A.

The regulatory document [21] says that gas drainage pipelines can be made of steel pipes with walls not less than 2.5 mm thick, or of pipes made of other materials adopted for the application in underground mines. Recently, glass fiber reinforced plastic pipes feature increasingly more frequent use as they have better technical characteristics than steel. The operation of gas drainage pipelines, subject to varying content and rate of wet methane–air mixture flow from drainage boreholes to ground surface, calls for specific care. The varying characteristics are the pressure, volume and methane content of the methane–air mixture in the pipeline. These factors influence the whole gas drainage process efficiency and the variable parameters of the methane–air mixture fed to ground surface. The growing depression in the underground gas pipeline results in the higher air inleakage from mine air, which adversely affects the gas mixture as the methane content decreases in it. The beneficial use of mine methane needs that methane content in the gas–air mixture is stable, which needs obligatory adjustment of the mixture flow regimes. An emphasis should be laid on the underground gas drainage system made of GFRP pipes only.

Keywords: gas drainage, wall friction, underground vacuum gas pipeline, methane–air mixture, glass reinforced plastic pipeline, air tightness, greenhouse effect, beneficial use of mine methane, pipe roughness.
For citation:

Malashkina V. A. Design and operation features of gas drainage pipelines made of different materials. MIAB. Mining Inf. Anal. Bull. 2022;(11):173-181. [In Russ]. DOI: 10.25018/0236_1493_2022_11_0_173.

Issue number: 11
Year: 2022
Page number: 173-181
ISBN: 0236-1493
UDK: 622.831
DOI: 10.25018/0236_1493_2022_11_0_173
Article receipt date: 01.07.2022
Date of review receipt: 15.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

V.A. Malashkina, Dr. Sci. (Eng.), Professor, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail:, ORCID ID: 0000-0001-9270-4790.


For contacts:

1. Parmuzin P. N. Zarubezhnyy i otechestvennyy opyt osvoeniya resursov metana ugol'nykh plastov [Foreing and domestic experience in the development of coalbed methane resources], Ukhta, UGTU, 2017, 109 p.

2. Zaburdyaev V. S. Metanoobility of high-performance excavation sites. Occupational Safety in Industry. 2022, no. 6, pp. 14—19. [In Russ]. DOI: 10.24000/0409-2961-2022-6-14-19.

3. Slastunov S. V., Yutyaev E. P., Mazanik E. V., Sadov A. P., Ponizov A. P. Ensuring methane safety of mines based on deep degassing of coal seams during their preparation for intensive development. Ugol'. 2019, no. 7, pp. 42—47. [In Russ]. DOI: 10.18796/0041-5790-2019-7-42-47.

4. Malashkina V. A. Monitoring the effectiveness of the coal mine degassing system — the basis for safe work of miners. MIAB. Mining Inf. Anal. Bull. 2020, no. 6-1, pp. 38—45. [In Russ]. DOI: 10.25018/0236-1493-2020-61-0-38-45.

5. Zaburdyaev V. S., Podobrazhin S. N. Methane injury hazard in Russian mines. Occupational Safety in Industry. 2021, no. 9, pp. 69—74. [In Russ]. DOI: 10.24000/0409-2961-2021-9-69-74.

6. Şuvar M. C., Lupu C., Arad V., Cioclea D., Păsculescu V. M., Mija N. Computerized simulation of mine ventilation networks for sustainable decision making process. Environmental Engineering and Management Journal. 2014, vol. 13, no. 6, pp. 1445—1451.

7. Junjie Chen, Deguang Xu Ventilation air methane of coal mines as the sustainable energy source. American Journal of Mining and Metallurgy. 2015, vol. 3, no. 1, pp. 1–8.

8. Kędzior S., Dreger M. Methane occurrence, emissions and hazards in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology. 2019, vol. 211, article 103226. DOI: 10.1016/j.coal.2019.103226.

9. Ruban A. D., Zaburdyaev B. C., Artemyev V. B. Features of coal bed degassing at mines with high productivity of treatment faces. Occupational Safety in Industry. 2009, no. 9, pp. 16—

18. [In Russ].

10. Kaledina N. O., Malashkina V. A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning. Journal of Mining Institute. 2021, vol. 250, pp. 553-561. [In Russ]. DOI: 10.31897/PMI.2021.4.8.

11. Ruban A. D., Zaburdyaev B. C., Artemyev V. B., Loginov A. K. Experience of high-performance work of treatment faces on methane-bearing coal seams. Ugol'. 2009, no. 10, pp. 3—7. [In Russ].

12. Trubetskoy K. N., Guryanov V. V. On the issue of the development of industrial methane production of coal deposits and its profitability. Ugol'. 2007, no. 1, pp. 55—58. [In Russ].

13. Malashkina V.A. Trends toward reduction of the mine methane emission in atmosphere. MIAB. Mining Inf.Anal. Bull. 2021, no. 10-1, pp. 137—145. [In Russ]. DOI: 10.25018/0236_1493_101_0_137.

14. Karpov E. F., Ryazanov A. V. Avtomatizatsiya i kontrol' degazatsionnykh sistem [Automation and control of degassing systems], Moscow, Nedra, 1983, 190 p.

15. Vostrikova N. A. Problems of diagnostics of the state of degassing systems. MIAB. Mining Inf. Anal. Bull. 2001, no. 10, pp. 122—133. [In Russ].

16. Malashkina V. A. Recent trends in efficiency improvement in application of degasification systems in coal mines. MIAB. Mining Inf. Anal. Bull. 2019, no. 6, pp. 206—214. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-206-214.

17. Su S., Beath A., Guo H., Mallett C. An assessment of mine methane mitigation and utilisation technologies. Progress in Energy and Combustion Science. 2005, vol. 31, pp. 123—170.

18. Alabyev V. R., Ashihmin V. D., Plaksienko O. V., Tishin R. A. Prospects for industrial methane production in the mine n.a. V.M. Bazhanov using vertical surface wells. Journal of Mining Institute. 2020, vol. 241, pp. 3—9. [In Russ]. DOI: 10.31897/PMI.2020.1.3.

19. Peych L. M., Torrent Kh. G., An'ez N. F., Eskobar Kh.-M. M. Prevention and protection against propagation of explosionsin underground coal mines. Journal of Mining Institute. 2017, vol. 225, pp. 307—312. [In Russ]. DOI: 10.18454/PMI.2017.3.307.

20. Krings T., Gerilowski K., Buchwitz M., Hartmann J., Sachs T., Erzinger J., Burrows J., Bovensmann H. Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data. Atmospheric Measurement Techniques. 2013, vol. 6, pp. 151—166.

21. Instruktsiya po degazatsii ugol'nykh shakht. Seriya 05. Vyp. 22 [Coal mine gar drainage guide. Series 05. Issue 22], Moscow, ZAO NTTs PB, 2012, 250 p. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.