Gas drainage design for extraction areas in highly gassy and outburst-hazardous coal seams in Karaganda Basin

Intensification of coal mining and complication of geological conditions of mining alongside with the reducing number of production faces necessitates enhancement of safety performance in extraction areas. One of the main conditions in this regard is the correct prediction of methane content in the production face area. This issue has been a subject of many recent researches but the effective standards yet use relations set over 40 years ago on the basis of the statistic approach neglecting the coal–methane–water system behavior. This study aims to adjust application ranges of the actual methods of methane content prediction, to identify major problems and to develop improvement activities toward the mine air safety. The article describes the methane content research in the extraction panel in the east wing of Kazakhstanskaya Mine, which is the super outburst-hazardous coal seam. It is shown that the difference of the calculated and actual methane contents exceeds 100%, which is connected in many ways with the slicing technology of mining and with the understated estimates of natural gas content of the test coal seam. For another thing, efficiency of gas drainage in a mined-out area greatly depends on pre-drainage treatment of coal seams.

Keywords: gas content, load, gas emission, gas drainage, efficiency, operating coal seam, mined-out areas, outbursts, prediction.
For citation:

Shayakhmetov R. T., Atygaev R. K., Filimonov E. N., Stelmakhov A. A. Gas drainage design for extraction areas in highly gassy and outburst-hazardous coal seams in Karaganda Basin. MIAB. Mining Inf. Anal. Bull. 2022;(11):133-146. [In Russ]. DOI: 10.25018/ 0236_1493_2022_11_0_133.

Issue number: 11
Year: 2022
Page number: 133-146
ISBN: 0236-1493
UDK: 622.83
DOI: 10.25018/0236_1493_2022_11_0_133
Article receipt date: 05.08.2022
Date of review receipt: 14.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

R.T. Shayakhmetov1, Head of Department, e-mail:,
R.K. Atygaev1, Cand. Sci. (Eng.), Expert, e-mail:,
Ye.N. Filimonov1, Cand. Sci. (Eng.), Technologist, e-mail:,
A.A. Stelmakhov, Cand. Sci. (Econ.), Assistant Professor, e-mail:, National University of Science and Technology «MISiS», 119049, Moscow, Russia,
1 Department of «Specshahtomontazhdegazation» of JSC «ArcelorMittal Temirtau», Karaganda, Kazakhstan.


For contacts:

A.A. Stelmakhov, e-mail:


1. Balovtsev S. V. Comparative assessment of aerological risks at operating coal mines. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 5—17. [In Russ]. DOI: 10.25018/0236-14932021-21-0-5-17.

2. Kulikova E. Yu., Vinogradova O. V. Risks as a cause of industrial safety inhibition in underground construction. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 146—154. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-146-154.

3. Kaledina N. O. Risk-based approach to keep mining industrial safety. MIAB. Mining Inf. Anal. Bull. 2020, no. 6-1, pp. 5—14. [In Russ]. DOI: 10.25018/0236-1493-2020-61-0-5-14.

4. Kędzior S., Dreger M. Methane occurrence, emissions and hazards in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology. 2019, vol. 211, article 103226. DOI: 10.1016/J.COAL.2019.103226.

5. Balovtsev S. V., Skopintseva O. V., Kolikov K. S. Aerological risk management in preparation mining of coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 1, pp. 107—116. [In Russ]. DOI: 10.21177/1998-4502-2022-14-1-107-116.

6. Slastunov S. V., Karkashadze G. G., Kolikov K. S., Ermak G. P. Methodology for calculating the permissible load on the treatment coal face according to the gas factor. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2013, no. 6, pp. 53—59. [In Russ].

7. Zakharov V. N., Malinnikova O. N., Trofimov V. A., Filippov Yu. A. Dependence of coal seam permeability on gas content and operating stresses. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no. 2, pp. 16—25. [In Russ].

8. Feng Yan-Yan, Jiang Cheng-Fa, Liu Dai-Jun, Chu Weib Microstructure and its nfluence on CH4 adsorption behavior of deep coal. Chinese Physics B. 2014, vol. 23, no 2, article 028201. DOI: 10.1088/174-1056/23/2/028201.

9. Rodin R. I., Shinkevich M. V. An approach to the assessment of gas-kinetic properties of destructible coal. Occupational Safety in Industry. 2020, no. 7, pp. 40—45. [In Russ]. DOI: 10.24000/0409-2961-2020-7-40-45.

10. Kolikov K. S., Egorova Е. А., Hossam Abdel Meguid. Assessment of the permeability of the coal seam, taking into account the heterogeneity in the geological structure of the roof. Gornyi Zhurnal. 2016, no. 6, pp. 56—59. [In Russ].

11. Ordin A. A., Okol’nishnikov V. V., Rudometov S. V., Metel’kov A. A. Evaluation of drum shearer capacity in coal seam with variable geomechanical and geotechnical characteristics. Journal of Mining Science. 2019, vol. 55, no. 1, pp. 57—65. DOI: 10.1134/S1062739119015299.

12. Weishauptová Z., Přibyl O., Sýkorová I., Machovič V. Effect of bituminous coal properties on carbon dioxide and methane high pressure sorption. Fuel. 2015, vol. 139, pp. 115—124.

13. Masoudian M. S., Airey D. W., El-Zein A. Experimental investigations on the effect of CO2 on mechanics of coal. International Journal of Coal Geology. 2014, vol. 128–129, pp. 12—23. DOI: 10.1016/J.COAL.2014.04.001.

14. Yixin Zhao, Honghua Song, Shimin Liu, Chengguo Zhang, Linming Dou, Anye Cao Mechanical anisotropy of coal with considerations of realistic microstructures and externalloadin directions. International Journal of Rock Mechanics and Mining Sciences. 2019, vol. 116, pp. 111—121. DOI: 10.1016/j.ijrmms.2019.03.005.

15. Malinnikova O. N., Ulyanova E. V., Kharchenko A. V., Pashichev B. N. The influence of the microstructure of coal on the gas saturation of the bottom-hole zone. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2020, no. 3, pp. 25—33. [In Russ].

16. Slastunov S. V., Kolikov K. S., Meshkov A. A., Sadov A. P., Khautiev A. M.-B. Improvement of pre-drainage technology based on hydraulic dissection of coal beds. MIAB. Mining Inf. Anal. Bull. 2021, no. 6, pp. 34—45. [In Russ]. DOI: 10.25018/0236_1493_2021_6_0_34.

17. Baymukhametov S. K., Imashev A. Zh., Mullagaliev F. A., Mullagalieva L. F., Kolikov K. S. Problems of working off gas-bearing and dangerous by sudden emissions of coal seams with low permeability in the Karaganda coal basin. MIAB. Mining Inf. Anal. Bull. 2021, no. 10-1, pp. 124—136. [In Russ]. DOI: 10.25018/0236_1493_2021_101_0_124.

18. Gendler S., Prokhorova E. Risk-based methodology for determining priority directions for improving occupational safety in the mining industry of the Arctic Zone. Resources. 2021, vol. 10, no. 3, article 20. DOI: 10.3390/resources10030020.

19. Kulikova E. Yu. Methodology of integral risk assessment in mine and underground construction. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 124—133. [In Russ]. DOI: 10.25018/ 0236-1493-2021-21-0-124-133.

20. Malashkina V. A. Monitoring the effectiveness of the coal mine degassing system — the basis of safe work of miners. MIAB. Mining Inf. Anal. Bull. 2020, no. 6-1, pp. 38—45. [In Russ]. DOI: 10.25018/0236-1493-2020-61-0-38-45.

21. Khivrin M. V. Perspective directions of development of multifunctional safety systems of coal mines. Occupational Safety in Industry. 2019, no. 5, pp. 59—64. [In Russ]. DOI: 10.24000/ 0409-2961-2019-5-59-64.

22. Rukovodstvo po proektirovaniyu ventilyatsii ugol'nykh shakht [Coal mine ventilation design guide], Makeevka-Donbass, 1989. [In Russ].

23. Metodicheskie rekomendatsii po proektirovaniyu ventilyatsii ugol'nykh shakht AO «ArsellorMittall Temirtau» [Methodological recommendations for the design of ventilation of coal mines of JSC «ArcellorMittall Temirtau»], Astana, 2012, 284 p. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.