Development of manmade mineral reserves using innovative technologies at Kvaisa deposit

Treatment of old tailings allowed production of a zinc concentrate at Zn content of 50.0% and recovery of 28.77%. The economic valuations show that profit from the sales of a small amount of a marketable product produced from a low-grade raw material is comparable with the processing expenses. The validated technique of construction of a flotation circuit for a mix of ore and tailings makes it possible to cut down the loss of metals with tailings through the reduced effect of mineral floatability. Namely, the rougher flotation process includes division of the initial feed between three parallel stages interconnected by the concentrate so that the first stage concentrate is mixed with the initial feeds of the subsequent stages of separation. Enrichment of the feed mixed with the better floatable product–concentrate–enables an increase in the content of the valuable component at the minimized decrease in the floatability contrast of the material. For the complete selective extraction of minerals in flotation with the production of rougher concentrates at three stages, the method is developed for conditioning air bubble surface via modification of process properties of the gas phase. Idea of modifying the process properties of the gas phase consists in using the connection between the wetting film stability and the temperature-governed forces induced by the changed structure of water at the phase interfaces as compared with the structure of water in the volume—the hydrophobic attraction and the hydrophilic repulsion. The tested technology features the thermal effect on the wetting film by the gas phase: air fed for airing the pulp is mixed with hot water steam, and the thermally conductive water brings the heat of condensation of the steam to the wetting film. It is shown that economic effect produced in the joint processing of ore and tailings is unachievable in treatment of tailings only.

Keywords: lead–zinc ore, old tailings, joint processing, processing circuit, flotation regime, hydrophobic attraction, hydrophilic repulsion.
For citation:

Gabaraev O. Z., Evdokimov S. I., Gerasimenko T. E., Maksimov R. N. Development of manmade mineral reserves using innovative technologies at Kvaisa deposit. MIAB. Mining Inf. Anal. Bull. 2023;(5-1):50-72. [In Russ]. DOI: 10.25018/0236_1493_2023_51_0_50.


The study was supported by the Russian Science Foundation, Grant No. 23-27-00093.

Issue number: 5
Year: 2023
Page number: 50-72
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236_1493_2023_51_0_50
Article receipt date: 13.01.2023
Date of review receipt: 13.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

O.Z. Gabaraev1, Dr. Sci. (Eng.), Head of Chair, e-mail:,
S.I. Evdokimov1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0002-2960-4786,
T.E. Gerasimenko1, Cand. Sci. (Eng.), Head of Intellectual Property Department, e-mail:, ORCID ID: 0000-0001-7048-4379,
R.N. Maksimov1, Dr. Sci. (Eng.), Professor, e-mail:,
1 North Caucasian Institute of Mining and Metallurgy (State Technological University), 362021, Vladikavkaz, Russia.


For contacts:

S.I. Evdokimov, e-mail:


1. Matveeva T. N., Gromova N. K., Lantsova L. B., Gladysheva O. I. Experimental justification of cyanoethyl dithiocarbamate usability toward enhanced copper and silver recovery from old waste at Solnechny GOK. MIAB. Mining Inf. Anal. Bull. 2023, no. 1, pp. 119—129. [In Russ]. DOI: 10.25018/0236_1493_2023_1_0_119.

2. Dushin V. A. Mineral resource potential of rare and rare-earth metals in the Polar Urals. MIAB. Mining Inf. Anal. Bull. 2022, no. 5, pp. 52—66. [In Russ]. DOI: 10.25018/0236_ 1493_2022_5_0_52.

3. Alenichev V. M., Alenichev M. V. Innovative orientation of resource saving in development of placer deposits. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-1, pp. 35—45. [In Russ]. DOI: 10.25018/0236_1493_2022_51_0_35.

4. Evdokimov S. I., Evdokimov V. S. Processing of stale tailings of a lead–zinc concentrating plant. Izvestiya vuzov. Tsvetnaya metallurgiya. 2015, no. 3, pp. 3—11. [In Russ]. DOI: 10.17073/ 0021-3438-2015-3-3-11.

5. Evdokimov S. I., Evdokimov V. S. Extraction of metals from stale tailings for the purpose of disposal. Physico-technical problems of mineral development. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2014, no. 4, pp. 172—182. [In Russ].

6. Evdokimov S. I., Evdokimov V. S. Liquidation of accumulated environmental damage by disposal of stale tailings of a lead-zinc concentrating plant. Ecology & Industry of Russia. 2014, no. 8, pp. 8—13. [In Russ].

7. Chanturia V. A. Prospects for sustainable development of the mining industry in Russia. Gornyi Zhurnal. 2007, no. 2, pp. 2—9. [In Russ].

8. Kelso Jody, Cincilla Williama, Malhotra Deepak. Opportunities and challenges for mineral waste reprocessing in North America. Mining Environmental Management. 2006, pp. 8—19.

9. Algebraistova N. K., Prokopiev I. V., Markova A. S., Kolotushkin D. M., Prokopiev I. V. Development of the technological scheme and reagent mode of the collective cycle of lead-zinc ore flotation. Gornyi Zhurnal. 2017, no. 1, pp. 50—54. [In Russ]. DOI: 10.17580/gzh/2017.01.10.

10. Semushkina L. V., Turysbekov D. K., Rulev N. N., Narbekova S. M. Flotation of lead-zinc ores beneficiation tailings with a combined collector using microemulsification. Obogashchenie Rud. 2017, no. 2, pp. 26—31. [In Russ]. DOI: 10.17580/or.2017.02.05.

11. Cairncross K. H., Tadie M. Life cycle assessment as a design consideration for process development for value recovery from gold mine tailings. Minerals Engineering. 2022, vol. 183, article 107588. DOI: 10.1016/j.mineng.2022.107588.

12. Bevandic S., Blannin R., Escobar A. G., Bachmann K., Muchez P. Metal deportament in Pb-Zn mine wastes from a historic tailings pond, Plombieres, East Belgium. Minerals Engineering. 2022, vol. 184, article 107628. DOI: 10.1016/j.mineng.2022.107628.

13. Kaplunov D. R., Rylnikova M. V., Radchenko D. N. Expansion of the raw material base of mining enterprises based on the integrated use of mineral resources of deposits. Gornyi Zhurnal. 2013, no. 12, pp. 29—33. [In Russ].

14. Ayeni F. A., Lbitoye S. A., Adeleke A. A. Evaluation of a magnetic-gravity processing route to recover columbity from Jos Minesfield tailings dump, Nigeria. Journal of Mining and Metallurgy, Section A: Mining. 2012, vol. 48 A, pp. 143—151.

15. Chen Y., Mariba E. R., Van Dyk L., Potgieter J. H. A review of non-conventional metals extracting technologies from ore and waste. International Journal of Mineral Processing. 2011, vol. 98, no. 1-2, pp. 1—7. DOI: 10.1016/j.minpro.2010.10.001.

16. Nam K. S., Jung B. H., An J. W., Ha T. J., Tran T., Kim M. J. Use of chloride-hypochlorite leachants to recover gold from tailings. International Journal of Mineral Processing. 2008, vol. 86, no. 1, pp. 131—140. DOI: 10.1016/j.minpro.2007.12.003.

17. Valderrama L., Rubio J. Unconventional column flotation of low-grade gold fine particles from tailings. International Journal of Mineral Processing. 2008, vol. 86, no. 1, pp. 75—84.

18. Kashinath Pal, Harsha Vardhan, Mangalpady Aruna Investigation of contaminant transport in groundwater from the tailings pond of uranium mine: a case study. International Journal of Mining and Mineral Engineering. 2010, vol. 2, no. 4, pp. 290—309. DOI: 10.1504/ijmme. 2010.039039.

19. Poling G. W. Mining/milling processes and tailings generation. Marine Georesources & Geotechnology. 1995, vol. 13, no. 1—2, pp. 19—31.

20. Kradenykh I. A., Barchukov A. V. The role of horizontal integration in the strategic development of small and medium-sized gold mining businesses. Herald of Siberian institute of business and information technologies. 2015, no. 4 (16), pp. 10—15. [In Russ].

21. Kudryavsky Yu. P., Cherny S. A. Ecological and economic criterion for the effectiveness of industrial waste processing technologies in non-ferrous metallurgy. Tsvetnye metally. 2008, no. 4, pp. 8—11. [In Russ].

22. Peshkov, A. M. Formation of requirements to the quality of natural and technogenic mineral raw materials in the complex development of ore deposits. MIAB. Mining Inf. Anal. Bull. 2013, no. 5, pp. 86—96. [In Russ].

23. Rylnikova M. V., Peshkov A. M. Justification of requirements to the quality of natural and technogenic mineral raw materials in the complex development of deposits. MIAB. Mining Inf. Anal. Bull. 2011, no. 1, pp. 58—64. [In Russ].

24. Le Duc Nguyen Geomechanical justification of the parameters of the chamber development system for mining of the transition zone of Sin-Queen deposit (Vietnam). Mine Surveying and Subsurface Use. 2011, no. 2, pp. 44—52. [In Russ].

25. Peshkova M. Kh., Matsko N. A., Kharitonova M. Yu. Assessment of opportunities to increase accessibility of closely located placer deposits through their joint development. MIAB. Mining Inf. Anal. Bull. 2007, no. 10, pp. 29—36. [In Russ].

26. Sergeev I. B., Ponomarenko T. V. Formation and assessment of synergistic effects in the integration of mining companies. MIAB. Mining Inf. Anal. Bull. 2013, no. 6, pp. 316—322. [In Russ].

27. Zimin V. V. Estimation of efficiency and effectiveness of synergy in mergers and acquisitions. Ekonomicheskie nauki. 2019, no. 9(178), pp. 131—134. [In Russ]. DOI: 10.14451/ 1.178.131.

28. Samygin V. D., Grigoryev P. V. Modeling the influence of hydrodynamic factors on flotation selectivity. Part 1. Influence of bubble diameter and dissipation of turbulent energy. Fizikotekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2015, no. 1, pp. 145—152. [In Russ].

29. Teisala H., Butt H. J. Hierarchical structures for superhydrophobic and superoleophobic surfaces. Langmuir. 2019, vol. 35, no. 33, pp. 10689—10703. DOI: 10.1021/acs.langmuir. 8b03088.

30. Miller J. D., Wang X., Jin J., Shrimali K. Interfacial water steucture and the wetting of mineral durfaces. International Journal of Mineral Processing. 2016, vol. 156, pp. 62—68.

31. Smorodin V. E. Endothermic wetting effect and mechanism of ice-forming action of AgI. Colloid Journal. 1991, vol. 53, no. 2, pp. 290—297. [In Russ].

32. Nilsson A., Pettersson L. G. Perspective on the structure of liquid water. Chemical Physics. 2011, vol. 389, iss. 1—3, pp. 1—34.

33. Xie L., Wang J., Lu Q., Hu W., Yang D., Qiao C., Peng Q., Wang T., Sun W., Liu Q., Zhang H. Surface interaction mechanisms in mineral flotation: Fundamentals, measurements, and perspectives. Advances in Colloid and Interface Science. 2021, vol. 295, article 102491. DOI: 10.1016/j.cis.2021.102491.

34. Hu P., Liang L. The role hydrophobic interaction in the heterocoagulation between coal and quartz particles. Minerals Engineering. 2020, vol. 154, article 106421. DOI: 10.1016/ j.mineng.2020.106421.

35. Xue J., Ren D., Chen T., Bu X., Wan X., Song Z., Zhao C. Hydrophobic agglomeration flotation of oxidized digenite fine particles induced by Na2S and butyl xanthate. Minerals Engineering. 2021, vol. 168, article 106932. DOI: 10.1016/j.mineng.2021.106932.

36. Guo H., Kovscek A. R. Investigation of the effects of ions on short-range non-DLVO forces at the calcite/brine interface and implications for low salinity oil-recovery processes. Journal of Colloid and Interface Science. 2019, vol. 552, pp. 295—311. DOI: 10.1016/j.jcis. 2019.05.049.

37. Li Z., Yoon R.-H. AFM force measurements between gold and silver surface treated in ethyl xanthate solutions: Effect of applied potentials. Minerals Engineering. 2012, vol. 36-38, pp. 126—131.

38. Pan L., Jung S., Yoon R.-H. A fundamental study on the role of collector in the kinetics of bubble-particle interaction. International Journal of Mineral Processing. 2012, vol. 106-109, pp. 37—41.

39. Wang J., Yoon R.-H., Morris J. AFM surface force measurements conducted between gold surface treated in xanthate solutions. International Journal of Mineral Processing. 2013, vol. 122, pp. 13—21.

40. Skvarla J. Hydrophobic interaction between macroscopic and microscopic surfaces. Unification using surface thermodynamics. Advances in Colloid and Interface Science. 2001, vol. 91, no. 3, pp. 335—390.

41. Evdokimov S. I., Gerasimenko T. E. Development of the regime of flotation of gold-bearing ores by a mixture of air with water vapor. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2021, no. 2, pp. 162—167. [In Russ]. DOI: 10.15372/FTPRPI20210217.

42. Evdokimov S. I. I., Gerasimenko T. E. Determination of rational steam consumption during flotation of apatite-nepheline ores by steam-air mixture. Journal of Mining Institute. 2022, vol. 256, pp. 567—578. [In Russ]. DOI: 10.31897/PMI.2022.62.

43. Boinovich L. B. Long-range surface forces and their role in development of nanotechnology. Uspekhi Khimii. 2007, vol. 76, no. 5, pp. 510—528. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.