Power system parameters in electric facilities with nonlinear loads

The quality of electric power at solid mineral mines in the arctic regions of Russia is analyzed. It is shown that regarding stand-alone power supply systems, an important component of calculation and prediction of electric power quality is determination of an impedance frequency characteristic. The dependences of the harmonic resistance of a power system on the parameters of the nonlinear electric load with a direct current component represented by a capacitance element are obtained; the dependences characterize the resonance phenomena and confirm the need to make allowance for such elements in the estimate of the power system parameters. The increase in the nonlinear load raises the error of estimate of the harmonic resistance in the system relative the conventional presentation of a power system as an inductive impedance. The results of computer-aided modeling of the harmonic resistance in a power network with an incidental harmonic generator at different parameters of the nonlinear electric load, which are proved on a laboratory scale, are described. The incidental harmonic generator can be a thyristor governor used in the mining industry for the gentle start of electric motors and for the active load management. The experimental measurements of a frequency response in a power network at a laboratory and training center with the entrance transformer capacity of 400 kVA are presented.

Keywords: nonlinear load, frequency converter, power system impedance, higher harmonics, electric power quality, rectifier, modeling, thyristor governor.
For citation:

Skamyin A. N., Dobush V. S., Shklyarskiy Y. E., Vasilkov O. S. Power system parameters in electric facilities with nonlinear loads. MIAB. Mining Inf. Anal. Bull. 2024;(6):88–104. [In Russ]. DOI: 10.25018/0236_1493_2024_6_0_88.

Acknowledgements:

The study was supported by the Russian Science Foundation, Grant No. 21-79-10027, https://rscf.ru/project/21-79-10027.

Issue number: 6
Year: 2024
Page number: 88-104
ISBN: 0236-1493
UDK: 621.31
DOI: 10.25018/0236_1493_2024_6_0_88
Article receipt date: 15.12.2023
Date of review receipt: 19.01.2024
Date of the editorial board′s decision on the article′s publishing: 10.05.2024
About authors:

A.N. Skam'in1, Cand. Sci. (Eng.), Assistant Professor, e-mail: skamin_an@pers.spmi.ru, ORCID ID: 0000-0001-7738-7539,
V.S. Dobush1, Cand. Sci. (Eng.), Assistant Professor, e-mail: dobush_vs@pers.spmi.ru, ORCID ID: 0000-0002-9401-5638,
J.E. Shkljarskij1, Dr. Sci. (Eng.), Professor, e-mail: shklyarskiy_yae@pers.spmi.ru, ORCID ID: 0000-0001-8803-9898,
O.S. Vasilkov1, Assistant, e-mail: vasilkov_os@pers.spmi.ru,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

A.N. Skam'in, e-mail: skamin_an@pers.spmi.ru.

Bibliography:

1. Litvinenko V. S., Dvoynikov M. V., Trushko V. L. Elaboration of a conceptual solution for the development of the Arctic shelf from seasonally flooded coastal areas. International Journal of Mining Science and Technology. 2022, vol. 32, no. 1, pp. 113—119. DOI: 10.1016/j.ijmst.2021.09.010.

2. The Arctic’s resource composition, production challenges and prospects. Arctic XXI century. Humanitarian sciences. 2023, no. 1(31), pp. 26—36. [In Russ]. DOI: 10.25587/SVFU.2023.44.59.003.

3. Mitrofanova G. V., Marchevskaya V. V., Taran A. E. Flotation separation of titanite concentrate from apatite-nepheline-titanite ores of anomalous zones of the Khibiny deposits. Journal of Mining Institute. 2022, vol. 256, pp. 560—566. [In Russ]. DOI: 10.31897/PMI.2022.81.

4. Potravnyi I. M., Yashalova N. N., Boroukhin D. S., Tolstoukhova M. P. The usage of renewable energy sources in the Arctic: The role of public-private partnership. Economic and Social Changes: Facts, Trends, Forecast. 2020, vol. 13, no. 1, pp. 144—159. DOI: 10.15838/esc.2020.1.67.8.

5. Belsky A. A., Glukhanich D. Y. Standalone power system with photovoltaic and thermoelectric installations for power supply of remote monitoring and control stations for oil pipelines. Renewable Energy Focus. 2023, vol. 47, article 100493. DOI: 10.1016/j.ref.2023.100493.

6. Ustinov D. A., Aysar A. R. Analysis of the impact of the distributed generation facilities on protection systems and voltage mode: Review. Occupational Safety in Industry. 2023, no. 2, pp. 15—20. [In Russ]. DOI: 10.24000/0409-2961-2023-2-15-20.

7. Achitaev A., Suslov K., Nazarychev A., Volkova I., Kozhemyakin V., Voloshin A., Minakov A. Application of electromagnetic continuous variable transmission in hydraulic turbines to increase stability of an off-grid power system. Renewable Energy. 2022, vol. 196, pp. 125—136. DOI: 196. 10. 1016/j.renene.2022.06.062.

8. Ustinov D. A., Aysar A. R. Development of a new working algorithm for improving the efficiency of the remote protection in the distributed generation networks. Occupational Safety in Industry. 2023, no. 5, pp. 20—27. [In Russ]. DOI: 10.24000/0409-2961-2023-5-20-27.

9. Jopri M. H., Abdullah A. R., Manap M., Yusoff M. R., Sutikno T. A fast localization of multiple harmonic sources for rectifier loads by utilizing periodogram. TELKOMNIKA (Telecommunication Computing Electronics and Control). 2017, vol. 15, no. 1, article 71. DOI: 10.12928/telkomnika.v15i1.3120.

10. Zhukovskiy Y., Tsvetkov P., Buldysko A., Malkova Y., Stoianova A., Koshenkova A. Scenario modeling of sustainable development of energy supply in the Arctic. Resources. 2021, vol. 10, no. 12, article 124. DOI: 10.3390/resources10120124.

11. Belsky A., Glukhanich D., Sutikno T., Jopri M. H. Estimation of hourly solar irradiation on tilted surfaces. Bulletin of Electrical Engineering and Informatics. 2023, vol. 12, no. 6, pp. 3202—3214. DOI: 10.11591/eei.v12i6.6513.

12. Abramovich B. N., Bogdanov I. A. Improving the efficiency of autonomous electrical complexes of oil and gas enterprises. Journal of Mining Institute. 2021, vol. 249, pp. 408—416. [In Russ]. DOI: 10.31897/PMI.2021.3.10.

13. Mustafa G. M., Gusev S. I. Filtration of electrical networks under dynamically changing conditions and its resolution with the help of active elements. Journal Energy of Unified Grid. 2017, no. 4, pp. 44—52. [In Russ].

14. Yaroshevich V. V., Karpov A. S. Challenges in power supply of the Arctic. International MultiConference on Industrial Engineering and Modern Technologies (FarEastCon). 2019, pp. 1—4. DOI: 10.1109/FarEastCon.2019.8934031.

15. Gusev S. I., Mustafa G. M. Peculiarities of using modular multilevel converters to normalize power quality indicators. Electric power. Transmission and distribution. 2018, no. 4(49), pp. 58—65. [In Russ].

16. Mahmoud M. O., Mamdouh W., Khalil H. Source current harmonic mitigation of distorted voltage source by using shunt active power filter. International Journal of Electrical and Computer Engineering. 2020, vol. 10, no. 4, article 3967. DOI: 10.11591/ijece.v10i4.pp3967-3977.

17. Yaroshevich V. V., Karpov A. S., Burtsev A. V. The consumer localization distorting power quality: Studying of a possibility. International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). 2018, pp. 1—4. DOI: 10.1109/FarEastCon.2018.8602817.

18. Tolkachev Ya. M., Tjutin D. A., Avakjan M. K., Tolkachev V. M., Batalov P. V. Reliability of power supply to large industrial consumers in the Arctic. News of the Tula state university. Technical sciences. 2021, no. 9, pp. 44—51. [In Russ]. DOI: 10.24412/2071-6168-2021-9-44-51.

19. Nevretdinov Yu. M., Fastiy G. P., Yaroshevich V. V., Karpov A. S. Analysis of monitoring registration of electric power quality indices. Vestnik Murmanskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2014, no. 17(1), pp. 67—76. [In Russ].

20. Zhou X., Liu Y., Chang P., Xue F., Zhang T. Voltage stability analysis of a power system with wind power based on the thevenin equivalent analytical method. Electronics. 2022, vol. 11, no. 11, article 1758. DOI: 10.3390/electronics11111758.

21. Dvoynikov M., Buslaev G., Kunshin A., Sidorov D., Kraslawski A., Budovskaya M. New concepts of hydrogen production and storage in Arctic Region. Resources. 2021, vol. 10, no. 1, article 3. DOI: 10.3390/resources10010003.

22. Morgunova M. O., Solovyev D. A., Nefedova L. V., Gabderakhmanova T. S. Renewable energy in the Russian Arctic: Environmental challenges, opportunities and risks. Journal of Physics: Conference Series. 2020, vol. 1565, no. 1, article 012086. DOI: 10.1088/1742-6596/1565/1/012086.

23. Zmieva K. A. Problems of energy supply in the Arctic regions. Innovacionnaya elektroenergetika dlya Arktiki. 2020, no. 1(8), pp. 6—14. [In Russ]. DOI: 10.24411/2658-4255-2020-10086.

24. Zharov V. S., Tsukerman V. A., Zharov N. V., Ivanov S. V. Innovation activity of northern mining enterprises as the most important factor of reducing the impact on the environment. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-2, pp. 95—104. [In Russ]. DOI: 10.25018/0236_1493_2022_102_0_95.

25. Luhtala R., Messo T., Roinila T., Alenius H., de Jong E., Burstein A., Fabian A. Identification of three-phase grid impedance in the presence of parallel converters. Energies. 2019, vol. 12, no. 14, article 2674. DOI: 10.3390/en12142674.

26. Kryltcov S., Solovev S. Efficient wind energy generation within Arctic latitudes. E3S Web of Conferences. 2019, vol. 140, no. 6, article 11005. DOI: 10.1051/e3sconf/201914011005.

27. Asiminoaei L., Teodorescu R., Blaabjerg F., Borup U. A digital controlled PV-Inverter with grid impedance estimation for ENS detection. IEEE Transactions on Power Electronics. 2005, vol. 20, no. 6, pp. 1480—1490. DOI: 10.1109/TPEL.2005.857506.

28. Liserre M., Blaabjerg F., Teodorescu R. Grid impedance estimation via excitation of LCL-filter resonance. IEEE Transactions on Industry Applications. 2007, vol. 43, no. 5, pp. 1401—1407. DOI: 10.1109/TIA.2007.904439.

29. Stiegler R., Meyer J., Schegner P., Chakravorty D. Measurement of network harmonic impedance in presence of electronic equipment. IEEE International Workshop on Applied Measurements for Power Systems (AMPS). 2015, pp. 1—6. DOI: 10.1109/AMPS.2015.7312737.

30. Jopri M. H., Ab Ghani M. R., Abdullah A. R., Manap M., Sutikno T., Too J. K-nearest neighbor and naïve Bayes based diagnostic analytic of harmonic source identification. Bulletin of Electrical Engineering and Informatics. 2021, vol. 9, no. 6, pp. 2650—2657. DOI: 10.11591/eei.v9i6.2685.

31. Kannan S., Meyer J. Recent developments in harmonic resonance detection in low voltage networks using impedance measurement techniques. 8th International Conference on Power Systems (ICPS). 2019, pp. 1—6. DOI: 10.1109/ICPS48983.2019.9067345.

32. Lei W., Nie C., Chen M., Wang H., Wang Y. A fast-transient repetitive control strategy for programmable harmonic current source. Journal of Power Electronics. 2017, vol. 17, no. 1, pp. 172—180. DOI: 10.6113/JPE.2017.17.1.172.

33. Kanálik M., Margitová A., Beňa Ľ., Kanáliková A. Power system impedance estimation using a fast voltage and current changes measurements. Energies. 2020, vol. 14, no. 1, article 63. DOI: 10.3390/en14010063.

34. Скамьин А. Н., Добуш В. С., Жопри М. Х. Определение сопротивления электрической сети при расчете режимов с искажениями в напряжении. Journal of Mining Institute. 2023, vol. 261, pp. 443—454. [In Russ]. DOI: 10.31897/PMI.2023.25.

35. Singh R. S., Ćuk V., Cobben S. Measurement-based distribution grid harmonic impedance models and their uncertainties. Energies. 2020, vol. 13, no. 16, article 4259. DOI: 10.3390/en13164259.

36. Zhukovskiy Y. L., Vasilev B. Y., Korolev N. A., Malkova Y. M. Analysis of the behavior of asynchronous electric drive with a closed scalar control system when changing the inductance of the magnetizing circuit. Indonesian Journal of Science and Technology. 2022, vol. 8, no. 1, pp. 65—78. DOI: 10.17509/ijost.v8i1.51983.

37. Aguila Tellez A., Lopez G., Isaac I., Gonzalez J. W. Optimal reactive power compensation in electrical distribution systems with distributed resources. Review. Heliyo. 2018, vol. 4, article e00746. DOI: 10.1016/j.heliyon.2018.e00746.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.