Prospects for development of a technological structure of underground coal mines

The article discusses the issues of changing the technological structure of coal mines in accordance with modern trends in the development of underground coal mining technologies. Against the background of an increase in the level of concentration of mining operations, the longwall’s productivity, the stages of evolution of the technological structure of Russian mines, the results of the transformation of its technological subsystems and elements are considered. The creation of conditions for the realization of the production potential of modern highperformance longwall equipment is highlighted as the main direction of improving underground coal mining technologies. The main problems and ways of improving the technological subsystems of mines are shown. The necessity of solving the problem of limiting the longwall’s productivity by the gas factor and improving degassing technologies is emphasized. The features of the implementation of modern concepts of “Intelligent mine” and “Invisible mine” in underground coal mining are considered. An example of the successful implementation of individual elements of the “smart mine” concept at the mines of JSC SUEK-Kuzbass is considered. The necessity of periodic monitoring of compliance of the adopted technological and organizational decisions with the current mining situation and their compliance with the best available technologies of underground coal mining is shown. Perspective directions of development of the technological structure of modern coal mines have been identified, ensuring an increase in the efficiency of realizing the potential of modern high-performance equipment and increasing the competitiveness of the underground method of coal mining.

Keywords: underground coal mining, sustainable development, longwall panel, productivity, mining equipment, downtimes, risk management, intelligent mine, invisible mine.
For citation:

Kazanin O. I., Meshkov A. A., Sidorenko A. A. Prospects for development of a technological structure of underground coal mines. MIAB. Mining Inf. Anal. Bull. 2022;(6—1):35—53. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_35.


Issue number: 6
Year: 2022
Page number: 35-53
ISBN: 0236-1493
UDK: 622.013
DOI: 10.25018/0236_1493_2022_61_0_35
Article receipt date: 14.01.2022
Date of review receipt: 30.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Kazanin O. I., Dr. Sci (Eng.), Dean of the Mining faculty, ORCID ID: 0000-0001-96636713, Saint Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, Russia, e-mail:;
Meshkov A. A., Cand. Sci. (Eng.), General director JCS SUEK-Kuzbass, e-mail: Meshkov_, JCS SUEK-Kuzbass, 652507, Kemerovo region, Leninsk-Kuznetsky, Vasilyeva St. 1, Russia;
Sidorenko A. A., Cand. Sci. (Eng.), Associate Professor of the Department of Mineral Resources Mining, e-mail:, ORCID ID: 0000-0003-4224193X, Saint Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, Russia.


For contacts:

Sidorenko А. А., e-mail:


1. Tarazanov I. G., Gubanov D. A. Russia’s coal industry performance for January– December, 2020. Ugol’. 2021, no. 3, pp. 27–43. [In Russ]. DOI: 10.18796/0041-5790-2021-


2. Kazanin O. I., Sidorenko А. А., Meshkov А. А. Organizational and technological principles of realization of the modern high productive longwall equipment capacity. Ugol’. 2019, no. 12, pp. 4–13. [In Russ]. DOI: 10.18796/0041-5790-2019-12—4-13.

3. Meshkov A. A., Volkov M. A., Ordin A. A. On record length and productivity of highwall mining the V. D. Yalevsky mine. Ugol’. 2018, no. 7. pp. 4–7. [In Russ]. DOI: 10.18796/0041-5790-2018-7-4—7.

4. Artem’ev V. B. AO «SUEK-Kuzbass». Production development in 2008—2017. Main results and factors in achieving them. Gornaya Promyshlennost’. 2018, no. 5. (141), pp.15–20. [In Russ].

5. Peng S. S. Longwall mining. London. CRC Press, 2019. 562 p. DOI: 10.1201/9780429260049.

6. Belodedov A. A., Shurygin D. N. An integrated approach for choosing an effective scheme for mine development. Izvestiya Tul’skogo gosudarstvennogo universiteta. Nauki o zemle. 2020, no.3, pp.100–112. [In Russ].

7. Ordin A. A., Metelkov A. A., Kolenchuk S. A. Instructional guidelines on optimization of fully mechanized production face length and output in flat coal seam mining. Fundamental and engineering questions of mining sciences. 2014, no.2, pp. 266–272. [In Russ].

8. Belyaev V. V. & Agafonov V. V. Synthesis of high-performance and advanced technological systems for coal mines. Ugol’. 2020, no. 11, pp. 36–42. [In Russ]. DOI: 10.18796/0041-5790-2020-11—36—42.

9. Kaledina N. O. Modern coal mines ventilation problems. MIAB. Mining Inf. Anal. Bull. 2015, no. S1, pp.141–149. [In Russ].

10. Slastunov S. V., Yutyaev E. P. Justifies Selection of a Seam Degassing Technology to Ensure Safety of Intensive Coal Mining, Zapiski Gornogo instituta. 2017, vol. 223, pp.125–130. DOI: 10.18454/pmi.2017.1.125.

11. Vinogradov E. A., Yaroshenko V. V., Kislicyn M. S. Method of gas emission control for safe working of flat gassy coal seams, IOP Conference Series: Earth and Environmental Science. 2017, vol. 87(2), 022023.

12. Vaganov V. S., Goffart T. V. Mine logistics new solutions, Ugol’. 2018, no. 8, pp.60–61. [In Russ].

13. Zubov V. P. Status and directions of improvement of development systems of coal seams on perspective Kuzbass coal mines. Zapiski Gornogo instituta. 2017, vol. 225, pp. 292–297. DOI: 10.18454/pmi.2017.3.292.

14. Nikiforov A. V., Vinogradov E. A., Kochneva A. A. Analysis of multiple seam stability. International Journal of Civil Engineering and Technology. 2019, vol. 10, iss. 2, pp. 1132–1139.

15. Kovalsk E. R., Karpov G. N., Leisle A. V. Investigation of underground entries deformation mechanisms within zones of high stresses. International Journal of Civil Engineering and Technology. 2018, vol. 9, iss. 6, pp. 534–543.

16. Aleksandrov V. I., Avksent’ev S. Yu., Maharatkin P. N. Energy efficiency of mine drainage systems. MIAB. Mining Inf. Anal. Bull. 2017, no. 2, pp. 253–268. [In Russ].

17. Egorov A. P., Kondakov I. A. Evaluation of the possibility and effectiveness of the implementation of technological schemes for high-speed underground mining in coal mine. Ugol’. 2019, no.10, pp.22–28.

18. Privalov A. A., Popov V. V., Yagodkin F. I., Hakulov V. A. Increase in the rate of mine drivage. MIAB. Mining Inf. Anal. Bull. 2017. no. 8, pp. 219–224. [In Russ].

19. Dobrovol’skij A. I., Feofanov G. L., Rudenko S. T., Essal’nikov A. O., Zaharov S. I. Organization of accounting of effective working time in the process of mining at the “Severnaya” mine. Ugol’. 2019, no. 12, pp. 14–19. [In Russ]. DOI: 10.18796/0041-57902019-12—14—19.

20. Yutyaev E. P. Present-day challenges and prospects of flat gas containing coal beds underground mining technologies. Ugol’. 2017, no. 5, pp. 30–36. DOI: 10.18796/0041-57902017-5-30—36. [In Russ].

21. Linnik Yu. N., Linnik V. Yu., Zhabin A. B., Polyakov A. V. Technical and economic performance of mines in the field of mechanization of mining operations. Izvestiya Tul’skogo gosudarstvennogo universiteta. Nauki o zemle. 2018, no. 3, pp.389–403. [In Russ].

22. Shiryaev S. N., Ageev P. G., Cherepov A. A., Petrova O. A., Fryanov V. N. Rationale for the development of coal mine drainage techniques and facilities. Vestnik Sibirskogo gosudarstvennogo industrial’nogo universiteta. 2018, vol. 3 (25), pp. 28–32. [In Russ].

23. Zolotyh S. C. Advance gas-freeing of coal seams as a factor of improved safety at the Kuzbass mines. Gornaya promyshlennost’. 2019, no. 5, pp.18–22. [In Russ]. DOI: 10.30686/1609-9192-2019-05—18—22.

24. Kaledina N. O., Malashkina V. A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning, Journal of Mining Institute. 2021, vol. 250, pp.553–561. DOI: 10.31897/PMI.2021.4.8.

25. Nepsha F. S., Efremenko V. M. Evaluation of the efficiency of optimal voltage management in the coal mine electricity supply system. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2018, no.1, pp.149–157. [In Russ].

26. Gao Y., Liu D., Zhang X., He M. Analysis and optimization of entry stability in underground longwall mining, Sustainability (Switzerland). 2017, vol. 9 (11), 2079.

27. Fedorin V. A., Tatarinova O. A. Principles of the method of getting access to georesources in transportation optimization problems in underground coal mining. MIAB. Mining Inf. Anal. Bull. 2018, no. 3. pp.176–182. [In Russ]. DOI: 10.25018/0236-1493-20183-0—176—182.

28. Tupicyn A. V. Analysis of modern approaches to substantiation of design decisions on the basis of computer modeling. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2017, no. 4, pp.189–196. [In Russ].

29. Rudakov M. L., Smirnyakova V. V., Almosova Y. V., Kargopolove A. P. Factor analysis of industrial injuries with the purpose to improve the procedures for training the employees in occupational safety during coal mining. Bezopasnost’ Truda v Promyshlennosti. 2021, iss. 5, pp. 82–87. DOI: 10.24000/0409-2961-2021-5-82—87.

30. Smirniakov V. V., Smirniakova V. V. Comprehensive analysis and assessment of the role of hard-to-handle factors in the reasons of methane and coal dust explosions in mines in Russia. Biosciences Biotechnology Research Asia. 2015, vol. 12(1), pp. 59–69.

31. Rudakov M. L., Gridina E. B., Ershov, V. S. Utilisation of the safety index (Elmeri index) as the OSH indicator at coal mines. Latvian Journal of Physics and Technical Sciences, 2019, vol. 56(3), pp. 26–36. DOI: 10.2478/lpts-2019—0017.

32. Mishra R. K., Janiszewski M., Uotinen L. K. T., Szydlowska M., Siren T., Rinne M. Geotechnical Risk Management Concept for Intelligent Deep Mines. Procedia Engineering, 2017, vol. 191, pp. 361–368. DOI: 10.1016/j.proeng.2017.05.192.

33. Xue X., Chang J.-K., Liu Z.-Z. Context-aware intelligent service system for coal mine industry. Computers in Industry. 2014, vol. 65, iss. 2, pp. 291–305, DOI: 10.1016/j. compind.2013.11.010.

34. Hao Y., Wu Y., Zhang K., Zhang H., Chen Y., Li M., Li P. New insights on ground control in intelligent mining with internet of things. Comput. Commun. 2020, vol. 150, pp. 788–798, DOI: 10.1016/j.comcom.2019.12.032.

35. Ian Z., Inyang H. I., Daniels J. L., Otto F., Struthers S. Environmental issues from coal mining and their solutions. Mining science and technology. 2010, vol. 20 (2), pp. 215– 223.

36. Liu H., Wang Y., Pang S., Wang X., He J., Zhang J., Rodriguez-Dono A. Mining footprint of the underground longwall caving extraction method: A case study of a typical industrial coal area in China. Journal of Hazardous Materials. 2021, 127762, DOI: 10.1016/j. jhazmat.2021.127762.

37. Hou H., Ding Z., Zhang S., Guo S., Yang Y., Chen Z., Mi J. Wang X. Spatial estimate of ecological and environmental damage in an underground coal mining area on the Loess Plateau: implications for planning restoration interventions. J. Clean. Prod. 2021, vol. 287 (1), 125061. DOI: 10.1016/j.jclepro.2020.125061.

38. Palyanova N. V., Zadkov D. A., Chubukova S. G. Legal framework for the sustainable economic and ecological development in the coal industry in Russia. Eurasian Mining. 2017, no. 1, pp. 3–5. DOI: 10.17580/em.2017.01.01.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.