Prospects for pressure-driven membrane technologies in mining

The article discusses accumulation of mine water as a result of drainage of mineral deposits. The chemistry of this voluminous impoundment is governed by the geology and hydrogeology of a deposit, by climate and by the type of mining activity. According to geohydrodynamic zonality, surface water penetrates various aquifers and undergoes alteration in chemical composition from hydrocarbonate to hydrocarbonate-and-sulfate and to sulfate, then to chloride water with increased mineralization. Then, passing through underground excavations to catchment areas, the water gets contaminated with suspended materials, heavy metal ions and organic impurities. Pumping-out of mine water generates large cones of influence, which violates hydrodynamics and results in disappearance of surface springs. Consequently, mineral mining induces depletion and contamination of aquifers. Large volumes of mine water are insufficiently utilized in production and economic activities due to imperfect treatment. Such mine water is later on discharged to surface water sources and contaminates them. To use mine water without pollution of surface water sources nearby, as well as to eliminate depletion of aquifers, it is required to implement integrated treatment of mine water. A promising way to do this is using membrane technologies. The membrane technologies are applied at the final stage of water treatment and allow effective purification of mine water. The authors describe various membrane technologies, their operation, as well as application areas and capabilities, and substantiate their essentiality in mining practices.

Keywords: mine water, aquifer, geohydrodynamic zonality, membrane technologies, microfiltration, ultrafiltration, nanofiltration, reverse osmosis, membrane, desalination.
For citation:

Kulikova A. A., Khabarova E. I., Sergeeva Yu.A. Prospects for pressure-driven membrane technologies in mining. MIAB. Mining Inf. Anal. Bull. 2021;(2):22-32. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0-22-32.

Issue number: 2
Year: 2021
Page number: 22-32
ISBN: 0236-1493
UDK: 66.067.38:668
DOI: 10.25018/0236-1493-2021-2-0-22-32
Article receipt date: 13.08.2020
Date of review receipt: 21.10.2020
Date of the editorial board′s decision on the article′s publishing: 10.01.2021
About authors:

A.A. Kulikova, Senior Lecturer, e-mail:, Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia,
E.I. Khabarova, Cand. Sci. (Chem.), Assistant Professor, Lomonosov Institute of Fine Chemical Technologies, MIREA — Russian Technological University, Moscow, Russia, e-mail:, Russia,
Yu.A. Sergeeva, Deputy Head of Department of Industrial Control, Industrial Safety, Labor Protection and Environmental Protection; Head of Department of Environmental Protection, JSC «SUEK», Moscow, Russia, e-mail:


For contacts:

A.A. Kulikova, e-mail:


1. Gavrishin A. I. Regularities of the formation of the chemical composition of mine waters in the eastern Donbass. Doklady Akademii nauk. 2018, vol. 481, no 2, pp. 186–188. [In Russ].

2. Balovtsev S. V., Shevchuk R. V. Geomechanical monitoring of mine shafts in difficult ground conditions. MIAB. Mining Inf. Anal. Bull. 2018, no 8, pp. 77—83. [In Russ]. DOI: 10.25018/0236-1493-2018-8-0-77-83.

3. Zinovieva O. M., Kolesnikova L. A., Merkulova A. M. & Smirnova N. A. Environmental analysis in coal mining regions. Ugol'. 2020, no 10, pp. 62—67. [In Russ]. DOI: 10.18796/00415790-2020-10-62-67.

4. Kulikova E. Yu. Estimation of factors of aggressive influence and corrosion wear of underground structures. Materials Science Forum. 2018. Vol. 931. Pp. 385—390. DOI: 10.4028/www. / MSF.931.385 Trans Tech Publications, Switzerland.

5. Kulikova E. Yu. Assessment of operating environment of concrete lining of sewage collector tunnels. IOP Conference Series. Materials Science and Engineering. 2019. Vol. 687. Article 044035. DOI: 10.1088/1757-899X/687/4/044035.

6. Gavrishin A. I. Mine waters of the Eastern Donbass and their impact on the composition of ground and surface waters in the region. Water resources. 2018, vol. 45, no 5, pp. 555—565. [In Russ].

7. Lebedev V. S., Skopintseva O. V. Residual coalbed gas components: Composition, content, hazard. Gornyi Zhurnal. 2017, no 4, pp. 84—86. [In Russ]. DOI: 10. 17580/gzh.2017.04.17.

8. Lebedev V. S., Skopintseva O. V., Savelev D. I. Research of residual gas-bearing capacity of coal with thermal influence. Gornyi Zhurnal. 2014, no 5, pp. 20—22. [In Russ].

9. Balovtsev S. V., Skopintseva O. V., Kolikov K. S. Aerological risk management in designing, operation, closure and temporary shutdown of coal mines. MIAB. Mining Inf. Anal. Bull. 2020, no 6, pp. 85–94. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-85-94.

10. Batugin A., Kolikov K., Ivannikov A., Ignatov Y., Krasnoshtanov D. Transformation of the geodynamic hazard manifestation forms in mining areas. 19th International Multidisciplinary Scientific Geoconference SGEM 2019. Conference proceedings. 2019. Vol. 19. Issue 1.3. Pp. 717—724. DOI: 10.5593/sgem2019/1.3/S03.091.

11. Zirehpour A., Rahimpour A. Membranes for wastewater treatment: Applications. Nanostructured Polymer Membranes. 2016, pp. 159—207.

12. Elam J. W. Membrane materials for water purification: design, development, and application. Environmental Science: Water Research and Technology. 2016. Vol. 2. No 1. Pp. 17—42.

13. Kulikova E.Yu. Assessment of polymer materials environmental compatibility in underground development. Ecology and Industry of Russia. 2016, vol. 20, no 3, pp. 28—31. [In Russ].

14. Boyko N. I., Odaryuk V.A., Safonov A. V. Application of membrane technologies in water purification. Tekhnologii grazhdanskoy bezopasnosti. 2014, vol. 11, no 2(40), pp. 64—69. [In Russ].

15. Levin A. A., Abonosimov O. A., Lazarev S. I., Kholodilin V. N., Lazarev D. S., Gorelova E. I. Membrane purification of technological solutions from iron and manganese ions. Bulletin of the Technological University. 2019, vol. 22, no 11, pp. 70—73. [In Russ].

16. Pelipenko M. V., Balovtsev S. V., Aynbinder I. I. Integrated accident risk assessment in mines. MIAB. Mining Inf. Anal. Bull. 2019, no 11, pp. 180–192. [In Russ]. DOI: 10.25018/02361493-2019-11-0-180-192.

17. Gavrishin A. I. Regularities of the formation of the chemical composition of mine waters and their impact on the geoecological situation (Komissarovskaya mine, Eastern Donbass). Geoecology. Engineering geology. Hydrogeology. Geocryology. 2015, no 6, pp. 505—513. [In Russ].

18. Paramonova S. V., Fedorov G. Yu. Wastewater purification by microfiltration. Vestnik magistracy. 2016, no 1-1, pp. 55—56. [In Russ].

19. Sutrisna P. D., Candrawan J., Tangguh W. W. Microfiltration of oily waste water: a study of flux decline and feed type. IOP Conference Series. Materials Science and Engineering. 2019. Vol. 543. Article 012079. DOI: 10.1088/1757-899X/543/1/012079.

20. Grishina E. S., Krupnov E. I., Timoshin L. I. Membrane technology based on nanofiltration. Information environment of the university. 2016, no 1 (23), pp. 426—429. [In Russ].

21. Babicheva R. I., Dmitriev S. V., Kistanov A. A., Dahanayaka M., Law Aw. K., Zhou K. New carbon membrane for water desalination via reverse osmosis. IOP Conference Series. Materials Science and Engineering. 2018. Vol. 447(1). Article 12053. DOI: 10.1088/1757899X/447/1/012053.

22. Landry M. J. The coset construction for non-equilibrium systems. DOI: 10.1007 / JHEP07(2020)200. [arXiv:1912.12301[hep-th]].

23. Landry M. J. Dynamical chemistry: non-equilibrium effective actions for reactive fluids. [arXiv:2006.13220[hep-th]].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.