Solar irradiation prospects in cyanide-bearing wastewater decontamination

Cyanide-bearing wastewater of mines often contains oxidation-resistant thiocyanates which prevent water purification. It is required to develop methods to minimize entry of thiocyanates to the environments due to their acute and chronic toxicity for aquatic biota, and also because of their ability to impede synthesis of thyroid hormones in higher organisms. The promising nature of the combination method for removal of thiocyanates from mine wastewater is demonstrated. The method consists in photochemical oxidation of pollutants in a Fentonlike system {Solar+S O 2–+Fe3+}, with natural sunlight as a source of radiation. Addition of ions Fe3+ increases constants of oxidation rate of thiocyanates by 20 times and results in their total destruction. It is found that variation in concentration of the oxidant and the increased exposure duration enables oxidation of thiocyanates down to a lesser number of toxic compounds. It is experimentally proved that photochemical oxidation of thiocyanates follows the joint ion–radical mechanism via formation of intermediate iron-bearing complexes which act as photosensitizers and initiate generation of in-situ active oxygen species, mainly sulfate anion-radicals.

Keywords: thiocyanates, cyanide-bearing wastewater, combination treatment methods, photochemical oxidation, active oxygen species, sulfate anion-radicals, photosensitizers, peroxidisulfate, natural sunlight.
For citation:

Batoeva A. A., Sizykh M. R., Munkoeva V. A., Tsybikova B. A. Solar irradiation prospects in cyanide-bearing wastewater decontamination. MIAB. Mining Inf. Anal. Bull. 2021;(7):53-69. [In Russ]. DOI: 10.25018/0236_1493_2021_7_0_53.

Acknowledgements:

The study was supported by the Russian Foundation for Basic Research and by the Government of the Republic of Buryatia, Joint Project No. 18-48-030005, and by the Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, Project No. 0273-2021-0006.

Issue number: 7
Year: 2021
Page number: 53-69
ISBN: 0236-1493
UDK: 628.316.12+544.526.2
DOI: 10.25018/0236_1493_2021_7_0_53
Article receipt date: 26.02.2021
Date of review receipt: 23.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.06.2021
About authors:

A.A. Batoeva1, Dr. Sci. (Eng.), Head of Laboratory, e-mail: abat@binm.ru,
M.R. Sizykh1, Cand. Sci. (Eng.), Senior Researcher, e-mail: marisyz@binm.ru,
V.A. Munkoeva1, Engineer, e-mail: munkoeva95@mail.ru,
B.A. Tsybikova1, Cand. Sci. (Eng.), Researcher, e-mail: belegmats@mail.ru,
1 Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, 670047, Ulan-Ude, Russia.

 

For contacts:

A.A. Batoeva, e-mail: abat@binm.ru

Bibliography:

1. Dai X., Simons A., Breuer P. A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores. Minerals Engineering. 2012, vol. 25, no. 1, pp. 1—13. DOI: 10.1016/j.mineng.2011.10.002.

2. Johnson C. A. The fate of cyanide in leach wastes at gold mines: An environmental perspective. Applied Geochemistry. 2015, vol. 57, pp. 194—205. DOI: 10.1016/j.apgeochem.2014.05.023.

3. Bacharov V. A. Tekhnologiya zolotosoderzhashchih rud [Gold-bearing ore technology]. Moscow, Izd. dom «MISiS», 2011, 420 p.

4. Turan A., Keyikoglu R., Kobya M., Khataee A. Degradation of thiocyanate by electrochemical oxidation process in coke oven wastewater: Role of operative parameters and mechanistic study. Chemosphere. 2020, vol. 255, pp. 127014. DOI: 10.1016/j.chemosphere.2020.127014.

5. Sovmen V. K., Gus'kov V.N., Belyj A. V., Drozdov S. V., etc. Pererabotka zolotonosnyh rud s primeneniem bakterial'nogo okisleniya v usloviyah Krajnego Severa [Processing of goldbearing ores using bacterial oxidation in the Far North.]. Novosibirsk, Nauka, 2007, 144 p.

6. Lazarev N. V., Levina E. N. Vrednye veshchestva v promyshlennosti, T. 3 [Harmful substances in industry: Vol. 3], Leningrad, Khimiya, 1977, 608 p.

7. Bhunia F., Saha N. C., Kaviraj A. Toxicity of thiocyanate to fish, plankton, worm, and aquatic ecosystem. Bulletin of Environmental Contamination and Toxicology. 2000, vol. 64, no. 2. pp. 197—204. DOI: 10.1007/s001289910030.

8. Lanno R. P., Dixon D. G. The comparative chronic toxicity of thiocyanate and cyanide to rainbow trout. Aquatic Toxicology. 1996, vol. 36, no. 3—4, pp. 177—187. DOI: 10.1016/S0166445X(96)00815-6.

9. Shafiei F., Watts M. P., Pajank L., Moreau J. W. The effect of heavy metals on thiocyanate biodegradation by an autotrophic microbial consortium enriched from mine tailings. Applied Microbiology and Biotechnology. 2021, vol. 105, no. 1, pp. 417—427. DOI: 10.1007/s00253020-10983-4.

10. Sharma V. K., Burnett C. R., O'Connor D. B., Cabelli D. Iron(VI) and iron(V) oxidation of thiocyanate. Environmental Science and Technology. 2002, vol. 36, no. 19, pp. 4182—4186. DOI: 10.1021/es020570u.

11. Oulego P., Collado S., Laca A., Díaz M. Simultaneous oxidation of cyanide and thiocyanate at high pressure and temperature. Journal of Hazardous Materials. 2014, vol. 280, pp. 570—578. DOI: 10.1016/j.jhazmat.2014.08.051.

12. Gould W. D., King M., Mohapatra B. R., Cameron R. A., Kapoor A., Koren D. W. A critical review on destruction of thiocyanate in mining effluents. Minerals Engineering. 2012, vol. 34, pp. 38—47. DOI: 10.1016/j.mineng.2012.04.009.

13. Jermakka J., Wendling L. A., Sohlberg E., Heinonen H., Vikman M. Potential technologies for the removal and recovery of nitrogen compounds from mine and quarry waters in subarctic conditions. Critical Reviews in Environmental Science and Technology. 2015, vol. 45, no. 7, pp. 703—748. DOI: 10.1080/10643389.2014.900238.

14. Villemur R., Juteau P., Bougie V., Ménard J., Déziel E. Development of four-stage moving bed biofilm reactor train with a pre-denitrification configuration for the removal of thiocyanate and cyanate. Bioresource Technology. 2015, vol. 181, pp. 254—262. DOI: 10.1016/j. biortech.2015.01.051.

15. Belyh M. P., Petrov S. V.. Chikin A. Y., Adelshin R. V., Bel'kova N. L. Cyanide detoxification by microbial consortia of natural-industrial complexes of gold heap leaching. Applied Biochemistry and Microbiology. 2017, vol. 53, no. 3, pp. 291—298. [In Russ]. DOI: 10.1134/ S0003683817030036.

16. Li L. et al. Degradation pathway and microbial mechanism of high-concentration thiocyanate in gold mine tailings wastewater. RSC Advances. 2020, vol. 10, no. 43, pp. 25679—25684. DOI: 10.1039/D0RA03330H.

17. Kuyucak N., Akcil A. Cyanide and removal options from effluents in gold mining and metallurgical processes. Minerals Engineering. 2013, vol. 50—51, pp. 13—29. DOI: 10.1016/j. mineng.2013.05.027.

18. Kitis M., Karakaya E., Yigit N. O., Civelekoglu G., Akcil A. Heterogeneous catalytic degradation of cyanide using copper-impregnated pumice and hydrogen peroxide. Water Research. 2005, vol. 39, no. 8, pp. 1652—1662. DOI: 10.1016/j.watres.2005.01.027.

19. di Biase A., Wei V., Kowalski M., Bratty M., Hildebrand M., Jabari P., Devlin T., Oleszkiewicz J. A. Ammonia, thiocyanate, and cyanate removal in an aerobic up-flow submerged attached growth reactor treating gold mine wastewater. Chemosphere. 2020, vol. 243, article 125395. DOI: 10.1016/j.chemosphere.2019.125395.

20. Ermakov D. V., Vorobev-Desyatovskij N. V. Main problems of neutralization of cyanidecontaining solutions and pulps of russian gold-mining industry. Part 1. Common approaches to issues of neutralization of cyanide wastes in russia and abroad. Tsvetnye metally. 2014, no. 6, pp. 42—47. [In Russ].

21. Gonzalez-Merchan C., Genty T., Bussière B., Potvin R., Paquin M., Benhammadi M., Neculita C. M. Influence of contaminant to hydrogen peroxide to catalyzer molar ratio in the advanced oxidation of thiocyanates and ammonia nitrogen using Fenton-based processes. Journal of Environmental Chemical Engineering. 2016, vol. 4, no. 4, pp. 4129—4136. DOI: 10.1016/j. jece.2016.09.001.

22. Gonzalez-Merchan C., Genty T., Bussière B., Potvin R., Paquin M., Benhammadi M., Neculita C. M. Ferrates performance in thiocyanates and ammonia degradation in gold mine effluents. Minerals Engineering. 2016, vol. 95, pp. 124—130. DOI: 10.1016/j.mineng.2016.06.022.

23. Budaev S. L., Batoeva A. A., Tsybikova B. A. Effect of Fenton-like reactions on the degradation of thiocyanate in water treatment. Journal of Environmental Chemical Engineering. 2014, vol. 2, no. 4, pp. 1907—1911. DOI: 10.1016/j.jece.2014.08.010.

24. Budaev S. L., Batoeva A. A., Tsybikova B. A. Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion. Minerals Engineering. 2015, vol. 81, pp. 88—95. DOI: 10.1016/j.mineng.2015.07.010.

25. Timofeeva S. S., Batoeva A. A. Wastewater from gold ore mining and processing plants and integrated technologies of their deactivation. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2013, no. 11, pp. 134—143. [In Russ].

26. Liu Y., Zhao Y., Wang J. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. Journal of Hazardous Materials. 2021, vol. 404, pp. 124191. DOI: 10.1016/j.jhazmat.2020.124191.

27. Singh H., Sonal S., Mishra B. K. Understanding the toxicity effect and mineralization efficiency of in-situ electrogenerated chlorine dioxide for the treatment of priority pollutants of coking wastewater. Ecotoxicology and Environmental Safety. 2021, vol. 211, article 111907. DOI: 10.1016/j.ecoenv.2021.111907.

28. Matta R., Sabrine T., Chiron S., Barbati S. Removal of carbamazepine from urban wastewater by sulfate radical oxidation. Environmental Chemistry Letters. 2011, vol. 9, no. 3, pp. 347—353. DOI: 10.1007/s10311-010-0285-z.

29. Lado Ribeiro A. R., Moreira N. F., Li Puma G., Silva A. M. T. Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chemical Engineering Journal. 2019, vol. 363, pp.155—173. DOI: 10.1016/j.cej.2019.01.080.

30. Wacławek S., Lutze H., Grübel K., Padil V. V. T., Cernik M., Dionysiou D. D. Chemistry of persulfates in water and wastewater treatment. A review. Chemical Engineering Journal. 2017, vol. 330, pp. 44—62. DOI: 10.1016/j.cej.2017.07.132.

31. Wang J., Wang S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal. 2018, vol. 334, pp. 1502—1517. DOI: 10.1016/j.cej.2017.11.059.

32. Kunjie Hou, Zhoujie Pi, Yao Fubing, Qi Yang A critical review on the mechanisms of persulfate activation by iron-based materials: Clarifying some ambiguity and controversies. Chemical Engineering Journal. 2021, vol. 407, article 127078. DOI: 10.1016/j.cej.2020.127078.

33. Giannakis S., Lin K. Y. A., Ghanbari F. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). Chemical Engineering Journal. 2021, vol. 406, pp.127083. DOI: 10.1016/j.cej.2020.127083.

34. Ike I. A., Linden K. G., Orbell J. D., Duke M. C. Critical review of the science and sustainability of persulphate advanced oxidation processes. Chemical Engineering Journal. 2018, vol. 338, pp. 651—669. DOI: 10.1016/j.cej.2018.01.034.

35. Deng Y., Ezyske C. M. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Research. 2011, vol. 45, no. 18, pp. 6189—6194. DOI: 10.1016/j.watres.2011.09.015.

36. Budaev S. L., Batoeva A. A., Khandarkhaeva M. S., Aseev D. G. Photochemical oxidation of persistent cyanide-related compounds. Russian Journal of Physical Chemistry A. 2017, vol. 91, no. 3, pp. 567—572. [In Russ]. DOI: 10.1134/S0036024417030049.

37. Cabrera Reina A., Miralles-Cuevas S., Cornejo L., Pomares L., Polo J., Oller I., Malato S. The influence of location on solar photo-Fenton: Process performance, photoreactor scalingup and treatment cost. Renewable Energy. 2020, vol. 145, pp. 1890—1900. DOI: 10.1016/j. renene.2019.07.113.

38. Davididou K., Chatzisymeon E., Perez-Estrada L., Oller I., Malato S. Photo-Fenton treatment of saccharin in a solar pilot compound parabolic collector: Use of olive mill wastewater as iron chelating agent, preliminary results. Journal of Hazardous Materials. 2019, vol. 372, pp. 137—144. DOI: 10.1016/j.jhazmat.2018.03.016.

39. Ortega-Gómez E., Ballesteros Martín M. M., Esteban B., Sánchez Pérez J. A., Fernandez-Ibanez P. Wastewater disinfection by neutral pH photo-Fenton: The role of solar radiation intensity. Applied Catalysis B: Environmental. 2016, vol. 181., pp. 1—6. DOI: 10.1016/j.apcatb.2015.06.059

40. Khandarkhaeva M., Batoeva A., Aseev D., Sizykh M., Tsydenova O. Oxidation of atrazine in aqueous media by solar-enhanced fenton-like process involving persulfate and ferrous ion. Ecotoxicology and Environmental Safety. 2017, vol. 137, pp. 35—41. DOI: 10.1016/j. ecoenv.2016.11.013.

41. Batoeva A. A., Sizykh M. R., Munkoeva V. A. Photocatalytic oxidation of thiocianates in aqueous solutions. Russian Journal of Applied Chemistry. 2020, vol. 93, no. 2, pp. 290—297. [In Russ]. DOI: 10.1134/S1070427220020184

42. Hovinen J., Lahti M., Vilpo J. Spectrophotometric determination of thiocyanate in human saliva. Journal of Chemical Education. 1999, vol. 76, no. 9, pp. 1281. DOI: 10.1021/ed076p1281.

43. PND F 14.1:2:3.1-95. Kolichestvennyy khimicheskiy analiz vod. Metodika izmereniy massovoy kontsentratsii ionov ammoniya v prirodnykh i stochnykh vodakh fotometricheskim metodom s reaktivom Nesslera [PND F (Federal Environmental Regulatory Document) 14.1:2:3.1-95 Quantitative chemical analysis of waters. Method for measuring the mass concentration of ammonium ions in natural and waste waters by the photometric method with Nessler's reagent], Moscow, FBU «FCAO», 2017, 26 p . [In Russ].

44. PND F 14.1:2.3-95. Kolichestvennyy khimicheskiy analiz vod. Metodika vypolneniya izmereniy massovoy kontsentratsii nitrit-ionov v prirodnykh i stochnykh vodakh fotometricheskim metodom s reaktivom Grissa [PND F (Federal Environmental Regulatory Document) 14.1:2.3-95 Quantitative chemical analysis of waters. Technique for measuring the mass concentration of nitrite ions in natural and waste waters by the photometric method with the Griss reagent]. Moscow, FBU «CEKA» MPR Rossii, 2004, 22 p. [In Russ].

45. PND F 14.1:2.4-95. Kolichestvennyy khimicheskiy analiz vod. Metodika vypolneniya izmereniy massovoy kontsentratsii nitrat-ionov v prirodnykh i stochnykh vodakh fotometricheskim metodom s salitsilovoy kislotoy [PND F (Federal Environmental Regulatory Document) 14.1:2.4-95. Quantitative chemical analysis of waters. Method of measuring the mass concentration of nitrate ions in natural and waste waters by the photometric method with salicylic acid], Moscow, FBU «FCAO», 2011, 18 p. [In Russ].

46. PND F 14.1:2.56-96. Kolichestvennyy khimicheskiy analiz vod. Metodika izmereniy massovoy kontsentratsii tsianidov v prirodnykh i stochnykh vodakh fotometricheskim metodom s piridinom i barbiturovoy kislotoy [PND F (Federal Environmental Regulatory Document) 14.1:2.56-96. Quantitative chemical analysis of waters. Methods for measuring the mass concentration of cyanides in na tural and waste waters by the photometric method with pyridine and barbituric acid]. Moscow, FBU «FCAO», 2015, 27 p. [In Russ].

47. Jiménez M. et al. Solar photo-Fenton degradation of herbicides partially dissolved in water. Catalysis Today. 2011, vol. 161, pp. 214—220. DOI: 10.1016/j.cattod.2010.11.080.

48. Malato S., Blanco J., Vidal A., Richter C. Photocatalysis with solar energy at a pilot-plant scale: an overview. Applied Catalysis B: Environmental. 2002, vol. 37, no. 1, pp. 1—15. DOI: 10.1016/S0926-3373(01)00315-0.

49. Wilson I. R., Harris G. M. The oxidation of thiocyanate ion by hydrogen peroxide. I. The pH-independent reaction. Journal of the American Chemical Society. 1960, vol. 82, no. 17, pp. 4515—4517. DOI: 10.1021/ja01502a017.

50. Krutzler T., Fallmann H., Maletzky P., Bauer R., Malato S., Blanco J. Solar driven degradation of 4-chlorophenol. Catalysis Today. 1999, vol. 54, no. 2, pp. 321—327. DOI: 10.1021/ ja01502a017.

51. Neta P., Huie R. E. Rate constants for reactions of nitrogen oxide (NO3) radicals in aqueous solutions. Journal of Chemical Physics. 1986, vol. 90, no. 19, pp. 4644—4648. DOI: 10.1021/j100410a035.

52. Buxton G. V., Bydder M., Salmon G. A. The reactivity of chlorine atoms in aqueous solution. Part II. The equilibrium SO –+Cl–Cl+SO 2–. Physical Chemistry Chemical Physics. 1999, vol. 1, pp. 269—273. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.