Prospects of integrated processing of primary gold-bearing porphyry copper ore

The composition of test low-grade primary gold-bearing ore from the Svoboda site of the Malmyzh porphyry copper deposit in the Khabarovsk Krai is revealed. The test data on extraction of magnetite from the ore flotation tailings are described. Magnetite represents a finely grained micro-aggregate impregnation in metasomatic quartz, and forms complex concretions with quartz and sulfide minerals. Two generations of magnetite are disclosed, which differ in composition and habitus of crystals, and in impurities and foreign bodies. To improve comprehensiveness of the use of ore, a magnetic separation flowsheet is developed. It is demonstrated that it is possible to produce magnetite concentrates with the contents of 63.85% and 50.31% Fe from flotation tailings of ore –0.071 mm in size. After the use of the ore flotation-and-magnetic separation flowsheet, iron recovery reached 49% at Fe content of 2.7% in nonmagnetic fraction. The scanning electron microscopy of magnetite concentrates detected pure iron in the form of free grains and inclusions in magnetite, and revealed intermetallic compounds of Fe, Cr, Ni, Ti and Mn at the contents (%mass): Fe (60–82), Cr (0.4–20.5), Ni (3–8), Ti (0.4–1), Mn (0.5–3.5), and Ti–Co–Fe–tungsten intermetallic compound. Concretions of magnetite and quartz contain micro-shots of argentite and native silver with an impurity of Cd.

Keywords: gold-bearing porphyry copper ore, flotation tailings, magnetic separation, recovery, magnetite concentrates, pure iron, intermetallic compounds, inclusions, impurities.
For citation:

Gurman M. A., Korneeva S. I. Prospects of integrated processing of primary goldbearing porphyry copper ore. MIAB. Mining Inf. Anal. Bull. 2024;(12):92-102. [In Russ]. DOI: 10.25018/0236_1493_2024_12_0_92.

Acknowledgements:
Issue number: 12
Year: 2024
Page number: 92-102
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2024_12_0_92
Article receipt date: 12.09.2024
Date of review receipt: 10.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.11.2024
About authors:

M.A. Gurman1, Cand. Sci. (Eng), Leading Researcher, e-mail: mgurman@yandex.ru,
S.I. Korneeva1, Cand. Sci. (Eng), Leading Researcher, e-mail: s_korneeva@mail.ru,
1 Mining Institute, Far East Branch, Russian Academy of Sciences, 680000, Khabarovsk, Russia.

 

For contacts:

M.A. Gurman, e-mail: mgurman@yandex.ru.

Bibliography:

1. Bortnikov N. S., Volkov A. V., Galyamov A. L., Vikent'ev I. V., Aristov V. V., Lalomov A. V., Murashov K. Y. Mineral resources of high-tech metals in Russia: State of the art and outlook. Geology of Ore Deposits. 2016, vol. 58, no. 2, pp. 83—103. DOI: 10.7868/S0016777016020027.

2. John D. A., Taylor R. D. By-products of porphyry copper and molybdenum deposits. Reviews in Economic Geology. 2016, vol. 18, no. 7, pp. 137—164. DOI: 10.5382/Rev.18.07.

3. Sillitoe R. H. Porphyry copper systems. Economic Geology. 2010, vol. 105, no. 1, pp. 3—41. DOI: 10.2113/gsecongeo.105.1.3.

4. Plaksin I. N. Izbrannye trudy. Obogashchenie poleznykh iskopaemykh [Selected works. Mineral processing], Moscow, Nauka, 1970, 311 p.

5. Sedel'nikova G. V., Romanchuk A. I., Bogomolov V. A., Ibragimova N. V., Vladykin A. Yu. Raw material base, state and prospects for processing copper porphyry ores abroad and in Russia. Problemy i perspektivy effektivnoy pererabotki mineral'nogo syr'ya v 21 veke. Plaksinskie chteniya—2019: Mezhdunarodnaya konferentsiya [Problems and prospects for efficient processing of mineral raw materials in the 21st century. Plaksin Readings—2019: International Conference], Irkutsk, 2019, 468 p. [In Russ].

6. Brodbeck M., McClenaghan S., Kamber B. S., Redmond P. Energy critical element and precious metal deportment in Cu-(Fe-) sulphides from the bingham canyon porphyry Cu-Mo-Au deposit. 22nd EGU General Assembly, 2020. DOI: 10.5194/egusphere-egu2020-22017.

7. Volkov A. V., Sidorov A. A. The depths of the Russian Arctic are a storehouse of metals for «green» technologies. Vestnik Rossijskoj akademii nauk. 2020, vol. 90, no. 1, pp. 56—62. [In Russ]. DOI: 10.31857/S0869587320010144.

8. Altushkin I. A., Levin V. V., Sizikov A. V., Korol Yu. A. Experience of development of Porphyry Сopper type deposits in the Urals. Journal of Mining Institute. 2017, vol. 228, pp. 641— 648. [In Russ]. DOI: 10.25515/PMI.2017.6.641.

9. Canil D., Grondahl C., Lacourse T., Pisiak L. K. Trace elements in magnetite from porphyry Cu– Mo–Au deposits in British Columbia, Canada. Ore Geology Reviews. 2016, vol. 72, part 1, pp. 1116— 1128. DOI: 10.1016/j.oregeorev.2015.10.007.

10. Zarasvandi A., Rezaei M., Raith J. G., Taheri M., Asadi S., Heidari M. Magnetite chemistry of the Sarkuh Porphyry Cu deposit, Urumieh-Dokhtar Magmatic Arc (UDMA), Iran. A record of deviation from the path sulfide mineralization in the porphyry copper systems. Journal of Geochemical Exploration. 2023, vol. 249, no. 5–6, article 107213. DOI: 10.1016/j.gexplo.2023.107213.

11. Mavrogonatos C., Voudouris P., Berndt J., Klemme S., Zaccarini F., Spry P. G., Melfos V., Tarantola A., Keith M., Klemd R., Haase K. Trace elements in magnetite from the Pagoni Rachi porphyry prospect, NE Greece: Implications for ore genesis and exploration. Minerals. 2019, vol. 9, article 725. DOI: 10.3390/min9120725.

12. Guo J.-H., Leng C.-B., Zhang X.-C., Zafar T., Chen W. T., Zhang W., Tian Z.-D., Tian F., Lai C.-K. Textural and chemical variations of magnetite from porphyry Cu–Au and Cu skarn deposits in the Zhongdian region, northwestern Yunnan, SW China. Ore Geology Reviews. 2020, vol. 116, article 103245. DOI: 10.1016/j.oregeorev.2019.103245.

13. Chanturiya V. A., Bocharov V. A. Current state and main trends in the development of complex processing of non-ferrous metal ores. Tsvetnye Metally. 2016, no. 11, pp. 11—18. [In Russ]. DOI: 10. 17580/ tsm. 2016.11.01.

14. Baranov V. F. Projects of new operating copper factories — types of circuits, equipment selection, industry trends. Obogashchenie Rud. 2021, no. 1, pp. 44—52. [In Russ]. DOI: 10.17580/or.2021. 01.08.

15. Kuznecova I. A., Maksimov I. I. Development of Copper Porphyry ores processing of the Tominsky deposit. Obogashchenie Rud. 2021, no. 2, pp. 9—14. [In Russ]. DOI: 10.17580/or.2021.02.02.

16. Sekisov A. G., Rasskazova A. V., Konareva T. G. Heap leaching of primary and mixed complex copper ores using activation preoxidation. Gornyi Zhurnal. 2024, no. 6, pp. 71—76. [In Russ]. DOI: 10.17580/gzh.2024.06.11.

17. Gurman M. A., Shcherbak L. I. Process mineralogy of the Malmyzh deposit. Journal of Mining Science. 2023, vol. 59(1), рр. 148—156. DOI: 10.1134/S1062739123010167.

18. Rasskazov I. Yu., Gurman M. A., Shcherbak L. I. The genetic features and flotation properties of porphyry–copper–gold ore (Malmyzh Deposit, Khabarovsk Krai, Russia). Doklady Earth Sciences, 2023, vol. 531. DOI: 10.1134/S1028334X23601748.

19. Pelevin A. E. Assessment of the feasibility of additional processing of tailings obtained in the processing of ores of the Gusevogorskoye deposit. Obogashchenie Rud. 2023, no. 1, pp. 38—45. [In Russ]. DOI: 10.17580/or.2023.01.06.

20. Gurman M. A., Shcherbak L. I. Process mineralogy and pre-treatment of the poperechny deposit magnetite ore. Journal of Mining Science. 2018, vol. 54(3), pp. 497—506. DOI: 10.1134/S10627 39118033918.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.