Choosing purification systems for drainage water from abandoned mines in the Kizel Coal Field

The existing purification systems for acid water of mine drainage can be classified as active and passive. The passive methods include self-sustaining geochemical, biological and physical processes, and are therefore economic and, accordingly, preferable for abandoned mines. On the other hand, these methods have some constraints. The key parameters to govern the choice of a passive or active purification technique are the flow rate and acidity of water, including pH and the content of metal ions as hydrolysis of the latter goes with output of hydrogen ions in the solution. This study aimed to select purification systems for acid mine water discharged in the Kosva River in the Perm Krai. The analysis used the existing criteria and recommendations on mine drainage control, as well as the published generalized experience of acid sewage purification in abandoned mines. With that end in view, the following parameters were calculated: the water acidity (CaСО3 equivalent in mg/l), including рН and contents of Fe, Al and Mn, and the alkali load as the alkaline material mass (CaСО3 equivalent) required to neutralize daily infed mine water. The comparison of the calculated and recommended parameters shows that acidity of spill water mostly exceeds the optimal values for the efficient passive purification. Anyway, in case of the flows at relatively small rates, the passive techniques are only applicable given a series arrangement of treatment systems (channels, sediment-ponds, water-logged sites).

Keywords: coal mines, acid mine water, acidity, alkalinity, active and passive purification systems, purification system selection criterion.
For citation:

Fetisova N. N., Fetisov V. V. Choosing purification systems for drainage water from abandoned mines in the Kizel Coal Field. MIAB. Mining Inf. Anal. Bull. 2024;(1):109-124. [In Russ]. DOI: 10.25018/0236_1493_2024_1_0_109.

Acknowledgements:

The study was supported by the Perm Scientific and Education Center for Rational Subsoil Use.

Issue number: 1
Year: 2024
Page number: 109-124
ISBN: 0236-1493
UDK: 504.064.4:502.36
DOI: 10.25018/0236_1493_2024_1_0_109
Article receipt date: 24.01.2023
Date of review receipt: 06.04.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

N.F. Fetisova, Cand. Sci. (Geol. Mineral.), Researcher, Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia, e-mail: fetisova.n.f@gmail.com, ORCID ID: 0000-0002-2346-337X,
V.V. Fetisov, Cand. Sci. (Geol. Mineral.), Associate Professor, Perm State National Research University, 614990, Perm, Russia, e-mail: fetisov.v.v@gmail.com, ORCID ID: 0000-0003-4712-4265.

 

For contacts:

N.N. Fetisova, e-mail: fetisova.n.f@gmail.com.

Bibliography:

1. Chen G., Ye Y., Yao N., Hu N., Zhang J., Huang Y. A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. Journal of Cleaner Production. 2021, vol. 329, article 129666. DOI: 10.1016/j.jclepro.2021.129666.

2. Rambabu K., Banat F., Pham Q. M., Ho S.-H., Ren N.-Q., Show P. L. Biological remediation of acid mine drainage: review of past trends and current outlook. Environmental Science and Ecotechnology. 2020, vol. 2, article 100024. DOI: 10.1016/j.ese.2020.100024.

3. Ushakova E., Menshikova E., Blinov S., Vaganov S., Perevoshchikov R. Distribution of trace elements, rare earth elements and ecotoxicity in sediments of the Kosva Bay, Perm Region (Russia). Journal of Ecological Engineering. 2022, vol. 23, no. 4. DOI: 10.12911/22998993/146269.

4. Jones D. R., Taylor J., Pape S., McCullough C. D., Brown P., Garvie A., Appleyard S., Miller S., Unger C., Laurencont T., Slater S., Williams D., Scott P., Fawcett M., Waggitt P., Robertson A. Preventing acid and metalliferous drainage: leading practice sustainable development program for the mining industry. Commonwealth of Australia, Canberra, 2016, 221 p.

5. Iatan E-L. Gold mining industry influence on the environment and possible phytoremediation applications. Phytorestoration of abandoned mining and oil drilling sites. Chapter 16. Oxford: Elsevier, 2021, pp. 373—408. DOI: 10.1016/B978-0-12-821200-4.00007-8.

6. Naidu G., Ryu S., Thiruvenkatachari R., Choi Y., Jeong S., Vigneswaran S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environmental Pollution. 2019, vol. 247, pp. 1110—1124. DOI: 10.1016/j.envpol.2019.01.085.

7. Maksimovich N. G., P'yankov S. V. Kizelovskiy ugol'nyy basseyn: ekologicheskie problemy i puti resheniya [Kizel coal basin: ecological problems and solutions], Perm, PGNIU, 2018, 288 p.

8. Fetisova N. F. Study of migration forms of metals in rivers affected by acid mine drainage of the Kizel coal basin. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021, no. 1, pp. 141—152. [In Russ]. DOI: 10.18799/24131830/2021/1/3007.

9. Ushakova E., Menshikova E., Blinov S., Osovetsky B., Belkin P. Environmental assessment impact of acid mine drainage from Kizel Coal Basin on the Kosva Bay of the Kama Reservoir (Perm Krai, Russia). Water (Switzerland). 2022, vol. 14, no. 5, article 727. DOI: 10.3390/ w14050727.

10. Maksimovich N. G., Khmurchik V. Т., Berezina О. А. Forms of transfer of microelements in river network and their distribution in bottom sediments in coal mining regions. MIAB. Mining Inf. Anal. Bull. 2022, no. 11, pp. 52—66. [In Russ]. DOI: 10.25018/0236_1493_2022_ 11_0_52.

11. Blinov S., Maksimovich N. G., Naidanova N. F., Shlykov V. G., Potapov S. S. Mineralogical bases of waste disposal of JSC «Berezniki soda plant». Mineralogiya tekhnogeneza. 2003, no. 4, pp. 51—55. [In Russ].

12. Maksimovich N. G. Creation of geochemical barriers to clearing sour drains waste from breed. Ugol'. 2006, no. 9 (965), pp. 64—65. [In Russ].

13. Ribnikov P. A., Ribnikova L. S., Maksimovich N. G., Demenev A. D. Hydrogeology of the Kizel coal basin (Western Urals, Russia) in post-mining stage: the main problems and ways of their solution. MIAB. Mining Inf. Anal. Bull. 2020, no. 3-1, pp. 475—487. [In Russ]. DOI: 10.25018/0236-1493-2020-31-0-475-487.

14. Taylor J., Pape S., Murphy N. A summary of passive and active treatment technologies for acid and metalliferous drainage (AMD). Fremantle, Werstern Australia, 2005, 49 p.

15. Skousen J. G., Rose A. W., Geidel G., Foreman J., Evans R., Hellier W. Handbook of technologies for avoidance and remediation of acid mine drainage. Morgan-town, National Mine Land Reclamation Center, 1998, 131 p.

16. Skousen J., Ziemkiewicz P. Performance of 116 passive treatment systems for acid mine drainage. Proceedings of 22nd National Meeting of the American Society of Mining and Reclamation. Lexington, ASMR, 2005, pp. 1100—1133. DOI: 10.21000/JASMR05011100.

17. Skousen J., Zipper C. E., Rose A., Ziemkiewicz P. F., Nairn R., McDonald L. M., Kleinmann R. L. Review of passive systems for acid mine drainage treatment. Mine Water and the Environment. 2017, vol. 36, pp. 133—153. DOI: 10.1007/s10230-016-0417-1.

18. Kirby C. S., Cravotta C. A. Net alkalinity and net acidity 1: theoretical considerations. Applied Geochemistry. 2005, vol. 20, pp. 1920—1940. DOI: 10.1016/j.apgeochem.2005.07.002.

19. Kirby C. S., Cravotta C. A. Net alkalinity and net acidity 2: practical considerations. Applied Geochemistry. 2005, vol. 20, pp. 1941—1964. DOI: 10.1016/j.apgeochem.2005.07.003.

20. Edelev A. V. Composition of drainage mine waters interacting with sulfide-containing rock: a predictive estimation. Geologiya i geofizica. 2013, vol. 54, no. 1, pp. 144—157. [In Russ].

21. Fetisova N. F. Acidity and alkalinity of mine water as key indicators for planning of treatment systems. Gornoe ekho. 2022, no. 2(87), pp. 32—38. [In Russ]. DOI: 10.7242/echo.2022.2.5.

22. Geoekologicheskaya geoinformatsionnaya sistema Kizelovskogo ugol'nogo basseyna [Geoecological geoinformation system of the Kizel coal basin], available at: http://kub.maps.psu.ru (accessed 24.10.2022). [In Russ].

23. Parkhurst D. L., Appelo C. A. J. Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Techniques and Methods. Book 6 Modeling Techniques, chapter 43 of Section A: Groundwater. Denver, Colorado, 2013, 497 p. DOI: 10.3133/TM6A43.

24. Maksimovich N. G., Khmurchik V. T., Meshcheryakova O. Y., Berezina O. A., Demenev A. D. Formation of technogenic bottom sediments under the influence of acid mine drainage of the Kizel coal basin. Sergeevskie chteniya. Fundamental'nye i prikladnye voprosy sovremennogo gruntovedeniya: Materialy godichnoy sessii Nauchnogo soveta RAN po problemam geoekologii, inzhenernoy geologii i gidrogeologii [Sergeyevskiye chteniya. Fundamental and applied issues of modern soil science: Proceedings of the annual session of the Scientific Council of the RAS on the problems of geoecology, engineering geology and hydrogeology], vol. 23, Moscow, Geoinfo, 2022, pp. 385—387. [In Russ].

25. Fetisova N. F. Arsenic speciation and sorption in acid mine drainage and the polluted water of the Kosva river basin, Russia. IOP Conference Series: Earth and Environmental Science. 2022, vol. 962, no. 1, article 012050. DOI: 10.1088/1755-1315/962/1/012050.

26. Lozano A., Ayora C., Fernández-Martínez A. Sorption of rare earth elements on schwertmannite and their mobility in acid mine drainage treatments. Applied Geochemistry. 2020, vol. 113, article 104499. DOI: 10.1016/j.apgeochem.2019.104499.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.