Cadmium and lead in the Soimonov valley soil, Karabash: Mobility, bioavailability and ecological risks

Mineral mining and processing activities generate substantial anthropogenic load on natural ecosystems. As a consequence, powerful flows of pollutants, including heavy metals such as Cd and Pb, appear and enter soil; they represent potential health hazard. Such problem develops in the Soimonov valley nearby Karabash in the Chelyabinsk Region. Here, natural and manmade ground was investigated in terms of total content and fraction composition of cadmium and lead in the zone of the Karabash geo-and-man-made system. Extraction of cadmium and lead from soil was carried out using Tessier’s method. It is found as a result that the test soils have mostly surface contamination in a layer 0–30 cm thick; the contamination degree exceeds total cadmium and lead contents of the Earth’s crust by 200 and 100 times, respectively. Distribution of fractions of the metals in the soil section is nonuniform. Cadmium is mostly present in exchange and carbonate fractions, and also in a fraction connected with an organic substance. Lead is present in a pseudosorbed form with Fe/Mn oxides and, in a less degree, with an organic substance. Lead, as against cadmium, is contained in a tightly bound residuum fraction, which proves its weaker mobility as compared with cadmium. Total content of cadmium and lead in lower-lying levels is of geogenic nature, and this soil features the increased geochemical background. The surface levels are rich in cadmium and lead because of induced inflow, which is confirmed by the calculated factors of enrichment and ecological risk. These results prove mobility and bioavailability of metal fractions. The research findings can promote development of activities aimed at improvement of regional ecological situation, and facilitate adjustment and normalization of general geochemical background in the test area.

Keywords: heavy metals, cadmium, lead, soil contamination, ecological risks, badland, mobility of heavy metals, forms of lead and cadmium.
For citation:

Shabanov M. V., Marichev M. S., Burachevskaya M. V., Minkina T. M., Bauer T. V. Cadmium and lead in the Soimonov valley soil, Karabash: Mobility, bioavailability and ecological risks. MIAB. Mining Inf. Anal. Bull. 2025;(4):104-120. [In Russ]. DOI: 10.25018/ 0236_1493_2025_4_0_104.

Acknowledgements:

The study was supported by the Ministry of Education of Russia, Agreement No. 073-00033-24-01, and by the Ministry of Science and Higher Education of Russia, Project No. FENW-2023-0008.

Issue number: 4
Year: 2025
Page number: 104-120
ISBN: 0236-1493
UDK: 502.3/.7:504: 622.17: 631.41
DOI: 10.25018/0236_1493_2025_4_0_104
Article receipt date: 06.11.2024
Date of review receipt: 10.12.2024
Date of the editorial board′s decision on the article′s publishing: 10.03.2025
About authors:

M.V. Shabanov1, Cand. Sci. (Agr.), Assistant Professor, Assistant Professor, e-mail: geohim.spb@gmail.com, Scopus Author ID: 35171489500, ORCID ID: 0000-0003-4725-3673,
M.S. Marichev1, Cand. Sci. (Biol.), Head of Laboratory, e-mail: m.s.marichev@yandex.ru, Scopus Author ID: 57216298057, ORCID ID: 0000-0003-0429-2234,
M.V. Burachevskaya, Cand. Sci. (Biol.), Head of Laboratory, Tula State Lev Tolstoy Pedagogical University, 300026, Tula Russia, e-mail: marina.0911@mail.ru, Scopus Author ID: 55656700000, ORCID ID: 0000-0002-0533-0418,
T.M. Minkina2, Dr. Sci. (Biol.), Professor, Head of Chair, e-mail: minkina@sfedu.ru, Scopus Author ID: 15063165400, ORCID ID: 0000-0003-3022-0883,
T.V. Bauer2, Cand. Sci. (Biol.), Leading Researcher,
D.I. Ivanovsky Academy of Biology and Biotechnology, e-mail: bauertatyana@mail.ru, Scopus Author ID: 55928833000, ORCID ID: 0000-0002-6751-8686,
1 Saint-Petersburg State Agrarian University, 196607, Pushkin, Russia,
2 Southern Federal University, 344090, Rostov-on-Don, Russia.

 

For contacts:

M.S. Marichev, e-mail: m.s.marichev@yandex.ru.

Bibliography:

1. Shabanov M. V., Marichev M. S., Nevidomskaya D. G., Minkina T. M. Acidic sulphate water influence on terricon soil pollution in the Karabash ore district. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 4, pp. 888—900. [In Russ] DOI: 10.21177/1998-4502-2023-15-4-888-900.

2. Kulikova E. Yu., Balovtsev S. V., Skopintseva O. V. Geoecological monitoring during mining operations. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 2, pp. 580—588. [In Russ] DOI: 10.21177/1998-4502-2024-16-2-580-588.

3. Nickolson F. A., Smith S. R., Alloway B. J., Carlton-Smith C., Chambers B. J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment. 2003, vol. 311, pp. 205—219. DOI: 10.1016/S0048-9697(03)00139-6.

4. de Vries W., Groenenberg J. E., Lofts S., Tipping E., Posch M. Critical loads of heavy metals for soils. Heavy Metals in Soils: Trace Metals and Metaloids in Soils and their Bioavailablity. 2013, pp. 211—237. DOI: 10.1007/978-94-007-4470-7_8.

5. Shabanov M. V., Marichev M. S. Arsenic accumulation in spolic technosols in the area of a large copper smelting plant in the Middle Urals. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2024, vol. 335, no. 6, pp. 123—134. [In Russ] DOI: 10.18799/24131830/2024/6/4357.

6. Plumlee G. S., Smith K. S., Ficklin W. H. Geoenvironmental models of mineral deposits, and geology-based mineral-environmental assessments of public lands. Open-File Report. 1994, vol. 1994 (94-203) US Geological Survey. DOI: 10.3133/ofr94203.

7. Wuana R. A., Okieimen F. E. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Ecology. 2011, vol. 2011, pp. 1—20. DOI: 10. 5402/2011/402647.

8. Skopintseva O. V., Ganova S. D., Buzin A. A., Fedotova V. P. Measures to reduce dusting during loading and transportation of solid mineral resources. Gornyi Zhurnal. 2019, no. 12, pp. 76—79. [In Russ] DOI: 10.17580/gzh.2019.12.16.

9. Romero A., González I., Galán E. Soil pollution by mining activities in Andalusia (South Spain). The role of Mineralogy and Geochemistry in three case studies. Journal of Soils and Sediments. 2018, vol. 18, pp. 2231—2247. DOI: 10.1007/s11368-017-1898-7.

10. Sokolov A. A., Miroshnikov A. S., Sokolova E. A. Control algorithms for mining and metallurgical plant-ambient environment system stability. Gornyi Zhurnal. 2016, no. 12, pp. 83—86. [In Russ] DOI: 10.17580/gzh.2016.12.17.

11. Shabanov M. V., Marichev M. S., Mangiyeva S. S., Sokolov A. A. Chemozem formation under conditions of prolong exposure to aero-industrial emissions from a mining and smelting plan. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 3, pp. 727—740. [In Russ] DOI: 10.21177/1998-4502-2023-15-3-727-740.

12. Krupskaya L., Kulikova E., Filatova M., Leonenko A. A mathematical model for assessing the impact of a man-made system on an air basin. Ecology and Industry of Russia. 2023, vol. 27, no. 8, pp. 50—57. [In Russ] DOI: 10.18412/1816-0395-2023-8-50-57.

13. Zinovieva O. M., Kolesnikova L. A., Merkulova A. M., Smirnova N. A. Environmental risk management at mining enterprises. Ugol’. 2022, no. 3, pp. 76—80. [In Russ] DOI: 10.18796/00415790-2022-3-76-80.

14. Tessier A., Campbell P. G. O., Bisson M. Sequential extraction procedure for the speciation of the particulate trace metals. Analytical Chemistry. 1979, vol. 51, pp. 844—851.

15. Sutherland R. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology. 2000, vol. 39, pp. 611—627. DOI: 10.1007/s002540050473.

16. Fei X., Lou Z., Xiao R., Lv X., Christakos G. Contamination and health risk assessment of heavy metal pollution in soils developed from different soil parent materials. Expo Health. 2023, vol. 15, pp. 395—408. DOI: 10.1007/s12403-022-00498-w.

17. Cao Y., Wang R., Liu Y., Li Y., Jia L., Yang Q., Zeng X., Li X., Wang Q., Wang R., Riaz L. Improved calculations of heavy metal toxicity coefficients for evaluating potential ecological risk in sediments based on seven major chinese water systems. Toxics. 2023, vol. 11, no. 8, article 650. DOI: 10.3390/toxics11080650.

18. Salbu B., Kreling T., Oughton D. H. Characterization of radioactive particles in the environment. Analyst. 1998, vol. 123, pp. 843—849.

19. Lasota J., Błońska E., Łyszczarz S., Tibbett M. Forest humus type governs heavy metal accumulation in specific organic matter fractions. Water, Air, & Soil Pollution. 2020, vol. 231, pp. 1—13. DOI: 10.1007/s11270-020-4450-0.

20. Smolders E., Mertens J. Cadmium. Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, Nederlands. 2013, pp. 283—311.

21. Rudnic R. L., Gao S. Composition of the continental crust. Treatise on Geochemistry. Elsevier, Amsterdam, 2003, 64 p. DOI: 10.1016/B0-08-043751-6/03016-4.

22. Wagner B., Tammen A., Jung D. Determining the lithogeochemical background concentrations of 39 elements in Bavarian rocks. Environmental Earth Sciences. 2022, vol. 81, no. 207, pp. 1—16. DOI: 10.1007/s12665-022-10334-8.

23. Kaludjerovic-Radoicic T., Raicevic S. Aqueous Pb sorption by synthetic and natural apatite: Kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal. 2010, vol. 160, pp. 503—510. DOI: 10.1016/j.cej.2010.03.061.

24. Dumat C., Chiquet A., Goody D., Aubry E., Morin G., Juillot F., Benedetti M. F. Metal ion geochemistry in smelter impacted soils and soil solutions. Bulletin de la Societe Geologique de France. 2001, vol. 172, pp. 539—548. DOI: 10.2113/172.5.539.

25. Paszko T. Effect of interactions between Cu2+, Ni2+ and Pb2+, Cr3+, Zn2+, Co2+ or Cd2+ cations on their sorption and mobility in grey-brown podzolic soils. Polish Journal of Soil Science. 2001, vol. 34, no. 2, pp. 49—58.

26. Basta N. T. Tabatai M. A. Effect of cropping systems on adsorption of metals by soils: III. Competitive Adsorption. Soil Science. 1992, vol. 153, pp. 331—337. DOI: 10.1097/00010694-19920400000010.

27. Veeresh H., Tripathy S., Chaudhuri D., Hart R. B., Powell A. M. Competitive adsorption behavior of selected heavy metals in three soil types of India amended with fly ash and sewage sludge. Environmental Geology. 2003, vol. 44, no. 3, pp. 363—370. DOI: 10.1007/s00254-003-0776-3.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.