Surface forces of structural origin in micro-fine gold flotation

For increasing metal recovery in rougher flotation, the best floatable rougher concentrate is used. In this case, the effect of the higher metal recovery is added with the effect of hydrophobic interaction between hydrophobic crude ore minerals and rougher concentrate minerals (minerals–bearers). The hydrophobic interaction initiates attraction of hydrophobic particles because of sliding of water over a hydrophobic surface and due to change in the energy state of water in the boundary layers of the particles. The backward process of departure of particles from each other needs the transferal of water molecules at the point of contact. For this reason, the particles behave as if there are the attractive forces between them (negative wedging pressure) with an action radius equal to the water boundary layer thickness. The increase in the magnitude of the forces of hydrophobic adhesion is used in the process of flotation with the wetting film heating. The heat flow can be ‘delivered’ to the wetting film from the side of the liquid phase by means of heating the whole flotation system (which requires much energy), or from the side of gas phase by filling bubbles with a heat carrier (this is an energy-saving approach). In the latter case, the air fed for the pulp aeration in flotation is mixed with steam. The case-study of gold-bearing ore flotation proves the efficiency of the new process designs.

Keywords: gold, ore, placer, integrated processing, gravitation, jet flotation, air–steam mixture, economic evaluation.
For citation:

Evdokimov S. I., Gerasimenko T. E., Kondratiev Y. I. Surface forces of structural origin in micro-fine gold flotation. MIAB. Mining Inf. Anal. Bull. 2023;(5-1):17-35. [In Russ]. DOI: 10.25018/0236_1493_2023_51_0_17.


The study was supported by the Russian Science Foundation, Project No. 23-27-00093.

Issue number: 5
Year: 2023
Page number: 17-35
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236_1493_2023_51_0_17
Article receipt date: 14.02.2023
Date of review receipt: 15.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

S.I. Evdokimov1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0002-2960-4786,
T.E. Gerasimenko1, Cand. Sci. (Eng.), Head of Intellectual Property Department, e-mail:, ORCID ID: 0000-0001-7048-4379, 
Y.I. Kondratiev1, Dr. Sci. (Eng.), Professor,
1 North Caucasian Institute of Mining and Metallurgy (State Technological University), 362021, Vladikavkaz, Russia.


For contacts:

T.E. Gerasimenko, e-mail:


1. Nikolov A., Lee J., Wasan D. DLVO surface forces in liquid films and statistical mechanics of colloidal oscillatory structural forces in dispersion stability. Advances in Colloid and Interface Science. 2023, vol. 313, article 102847. DOI: 10.1016/j.cis.2023.102847.

2. Zie L., Wang J., Lu Q., Hu W., Zeng H. Surface interaction mechanisms in mineral flotation: Fundamentals, measurements, and perspectives. Advances in Colloid and Interface Science. 2021, vol. 295, article 102491. DOI: 10.1016/j.cis.2021.102491.

3. Misra R. P., De Souza J. P., Blankschten D., Bazant M. Z. Theory of surface forces in multivalent electrolytes. Langmuir. 2019, vol. 35, no. 35, pp. 11550—11565. DOI: 10.1021/ acs.langmuir.9b01110.

4. Mohamad H. S., Neuber S., Helm C. A. Surface forces of asymmetrically grown polyelectrolyte multillayers: Searching for the charges. Langmuir. 2019, vol. 35, no. 48, pp. 15491— 15499. DOI: 10.1021/acs.langmuir.9b01787.

5. Adibnia V., Mirbagheri M., Latreille P. L., Banquy X., De Crescenzo G., Rochefort D. Interfacial forces across ionic liquid solutions: Effects of ion concentration and water domains. Langmuir. 2019, vol. 3, no. 48, pp. 15585—15591. DOI: 10.1021/acs.langmuir.9b02011.

6. Guo H., Kovscek A. R. Investigation of the effects of ions on short—range non—DLVO forces at the calcite/brine interface and implications for low salinity oil—recovery processes. Journal of Colloid and Interface Science. 2019, vol. 552, pp. 295—311. DOI: 10.1016/j. jcis.2019.05.049.

7. Bal V. Stability characteristics of nanoparticles in a laminar linear shear flow in the presence of DLVO and non—DLVO forces. Langmuir. 2019, vol. 35, no. 34, pp. 11175—11187. DOI: 10.1021/acs.langmuir.9b01886.

8. Hu P., Liang L. The role hydrophobic interaction in the heterocoagulation between coal and quartz particles. Minerals Engineering. 2020, vol. 154, no. 1, article 106421. DOI: 10.1016/j. mineng.2020.106421.

9. Long Q., Wang H., Jiang F., Tan W., Xu Z. Enhancing flotation separation of fine copper oxide from silica by microbubble assisted hydrophobic aggregation. Minerals Engineering. 2022, vol. 189, no. 1, article 107863. DOI: 10.1016/j.mineng.2022.107863.

10. Smith A. M., Borkovec M., Trefalt G. Forces between solid surfaces in aqueous electrolyte solutions. Advances in Colloid and Interface Science. 2020, vol. 275, article 102078. DOI: 10.1016/j.cis.2019.102078.

11. Pchelin V. A. On modeling hydrophobic interactions. Colloid Journal. 1972, vol. 34, no. 5, pp. 783—787. [In Russ].

12. Jadhav A. J., Barigou M. Bulk nanobubbles or not nanobubbles. Langmuir. 2020, vol. 36, no. 7, pp. 1699—1708. DOI: 10.1021/acs.langmuir.9b03532.

13. Schubert H. Nanobubbles, hydrophobic effect, heterocoagulation and hydrodynamics in flotation. International Journal of Mineral Processing. 2005, vol. 78, no. 1, pp. 11—21. DOI: 10.1016/j.minpro.2005.07.002.

14. Nguyen A. V., Nalaskowski J., Miller J. D., Butt H.-J. Attraction between hydrophobic surface studied by atomic microscopy. International Journal of Mineral Processing. 2003, vol. 72, no. 1—4, pp. 215—225. DOI: 10.1016/S0301-7516(03)00100-5.

15. Nizkaya T. V., Dubov A. L., Mourran A., Vinogradova O. I. Probing effective slippage on superhydrophobic stripes by atomic force microscopy. Soft Matter. 2016, vol. 12, pp. 6910— 6917. DOI: 10.1039/C6SM01074A.

16. Zhou J., Asmolov E. S., Schmid F., Vinogradova O. I. Effective slippage on superhydrophobic trapezoidal grooves. Journal of Chemical Physics. 2013, vol. 139, no. 17, pp. 174708— 174715. DOI: 10.1063/1.4827867.

17. Ageev A. I., Osipov A. N. Macroand microhydrodynamics of viscous liquid near superhydrophobic surface. Colloid Journal. 2022, vol. 84, no. 4, pp. 380—395. [In Russ]. DOI: 10.31857/S0023291222040024.

18. Iwasaki Y., Seyama M., Inoue S., Hayashi K., Matsuura N., Koizumi H. Direct measurement of near-wall molecular transport rate in a microchannel and its dependence on diffusivity. Langmuir. 2021, vol. 37, no. 29, pp. 8687—8695. DOI: 10.1021/acs.langmuir.1c00561.

19. Bosikov I. I., Klyuev R. V., Khetagurov V. N. Analysis and comprehensive evaluation of gas-dynamic processes in coal mines using the methods of the theory of probability and math statistics analysis. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 3, pp. 461—467. [In Russ]. DOI: 10.21177/1998-4502-2022-14-3-461-467.

20. Petrov Yu. S., Sokolov A. A., Raus E. V. A Mathematical model for estimating technogenic losses from the operation of mining enterprises. Sustainable Development of Mountain Territories. 2019, vol. 11, no. 4, pp. 554—560. [In Russ]. DOI: 10.21177/1998-4502-2019-11-4-554-559.

21. Balovtsev S. V., Skopintseva O. V., Kulikova E. Yu. Hierarchical structure of aerological risks in coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 276—285. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-276-285.

22. Li Z., Yoon R.-H. AFM force measurements between gold and silver surface treated in ethyl xanthate solutions: Effect of applied potentials. Minerals Engineering. 2012, vol. 36–38, no. 2–3, pp. 126—131. DOI: 10.1016/j.mineng.2012.03.013.

23. Liu J., Cui X., Xie L., Huang J., Zeng H. Probing effects of molecular-level heterogeneity of surface hydrophobicity on hydrophobic interactions in air/water/solid systems. Journal of Colloid and Interface Science. 2019, vol. 557, pp. 438—449. DOI: 10.1016/j.jcis.2019.09.034.

24. Pan L., Jung S., Yoon R.-H. A fundamental study on the role of collector in the kinetics of bubble—particle interaction. International Journal of Mineral Processing. 2012, vol. 106—109, pp. 37—41. DOI: 10.1016/j.minpro.2012.02.001.

25. Shchekin A. K., Gosteva L. A., Lebedeva T. S., Tatyanenko D. V. Unified approach to the wedging pressure in liquid and vapor interlayers in the framework of density functional method. Colloid Journal. 2021, vol. 83, no. 2, pp. 235—241. [In Russ].

26. Churaev N. V. Surface forces and physicochemistry of surface phenomena. Uspekhi Khimii. 2004, vol. 73, no. 1, pp. 26—38. [In Russ].

27. Boynovich L. B. Long-range surface forces and their role in development of nanotechnology. Uspekhi Khimii. 2007, vol. 76, no. 5, pp. 510—528. [In Russ]. DOI: 10.1070/RC2007v076n05ABEH003692.

28. Lu Shou-Tsy. On the role of hydrophobic interaction in flotation and flocculation. Colloid Journal. 1990, vol. 52, no. 1, pp. 858—864. [In Russ].

29. Evdokimov S. I., Gerasimenko T. E. Determination of rational steam consumption in flotation of apatite-nepheline ores by steam-air mixture. Journal of Mining Institute. 2022, vol. 256, pp. 567—578. [In Russ]. DOI: 10.31897/PMI.2022.62.

30. Evdokimov S. I., Gerasimenko T. E. Use of placer gold as mineral carrier in flotation of gold ore. MIAB. Mining Inf. Anal. Bull. 2020, no. 2, pp. 139—151. [In Russ]. DOI: 10.25018/0236-1493-2020-20-139-151.

31. Evdokimov S. I., Gerasimenko T. E. Properties of wetting liquid films in flotation processes. MIAB. Mining Inf. Anal. Bull. 2018, no. 6, pp. 142—152. [In Russ]. DOI: 10.25018/02361493-2018-6-0-142-152.

32. Evdokimov S. I., Gerasimenko T. E. Development of a mode of flotation of gold-bearing ores by a mixture of air with water vapor. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2021, no. 2, pp. 162—167. [In Russ]. DOI: 10.15372/FTPRPI20210217.

33. Petrov S. V. On the dependence of flotation extraction of platinoids on the content of metals in ore. Obogashchenie Rud. 2015, no. 5, pp. 14—18. [In Russ]. DOI: 10.17580/or.2015. 05.03.

34. Turtygina N. A. Adaptability of slot bin to in-situ ore pre-concentration flow chart. MIAB. Mining Inf. Anal. Bull. 2021, no. 8, pp. 82—92. [In Russ]. DOI: 10.25018/0236_1493_ 2021_8_0_82.

35. Klyuev R. V., Bosikov I. I., Mayer A. V., Gavrina O. A. Complex analysis of the use of effective technologies to enhance the sustainable development of the natural-technical system. Sustainable Development of Mountain Territories. 2020, no. 2, pp. 283—290. [In Russ]. DOI: 10.21177/1998-4502-2020-12-2-283-290.

36. Cheban A. Yu., Sekisov A. G., Khrunina N. P., Vasyanovich Yu. A. Mixed-type technology of crystal mineral mining. MIAB. Mining Inf. Anal. Bull. 2022, no. 7, pp. 55—67. [In Russ]. DOI: 10.25018/0236_1493_2022_7_0_55.

37. Galachieva S. V., Sokolov A. A., Sokolova O. A., Makhosheva S. A. Estimation system of sustainable development of regional national-economic complexes of mountain territories. Sustainable Development of Mountain Territories. 2018, vol. 10, no. 3 (37), pp. 329—335. [In Russ]. DOI: 10.21177/1998-4502-2018-10-3-329-335.

38. Barskiy L. A., Kozin V. Z. Sistemnyy analiz v obogashchenii poleznykh iskopaemykh [System analysis in processing of minerals], Moscow, Nedra, 1978, 486 p.

39. Guo F., He Q., Xing Y., Zhang Y., Ding S., Xu M., Gui X. Vertical adhesion force between particle and different positions on bubble surface. Minerals Engineering. 2021, vol. 164, no. 23, article 106807. DOI: 10.1016/j.mineng.2021.106807.

40. Ong Q. K., Sokolov I. Attachment of nanoparticles to the AFM tips for direct measurements of interaction between a single nanoparticle and surface. Journal of Colloid and Interface Science. 2007, vol. 310, no. 2, pp. 385—390.

41. Evdokimov S. I., Pan'shin A. M., Solodenko A. A. Mineralurgiya.T. 2. Uspekhi flotatsii [Mineralurgy. Vol. 2. Advances in Flotation], Vladikavkaz, OOO NPKP «MAVR», 2010, 992 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.