Talcum particle–air bubble attachment in the presence of carboxymethyl cellulose depressant

Attachment of air bubbles and talcum particles treated with carboxymethyl cellulose is analyzed as a case-study of flotation. The analysis using the extended DLVO (Derjaguin– Landau–Verwey–Overbeek) theory finds out that in the presence of the mentioned agent, talcum particles possessing strong hydrophobic properties freely attach air bubbles in the region of the nearest potential minimum, i.e. at a distance smaller than 0.5–0.7 nm, as the resultant force applied to the particle promotes its approach to the bubble. At the increased consumption of carboxymethyl cellulose, the wetting angle reduces and the electrokinetic potential of talcum grows in modulus. As a result, a potential barrier appears and prevents talcum particle–air bubble interaction. In the range of the farther potential minimum with an abscissa of 5–8 nm, the particle–bubble attachment is complicated as the resultant force applied to the particle prevents its approach to the bubble. The relationship between the carboxymethyl cellulose concentration threshold, which causes origination of the potential barrier, and the medium pH in the range from 7 to 11 at the ionic strength of the dispersive environment from 0.001 to 0.05 mol/l is determined. The potential barrier grows in height with higher concentration of carboxymethyl cellulose, increasing pH and decreasing ionic strength of the dispersive environment. The obtained relationships allow finding the carboxymethyl cellulose concentration for efficient depression of talcum at the known values of pH and ionic strength under conditions of flotation.

Keywords: talcum, depression, carboxymethyl cellulose, extended DLVO theory, potential energy of particle–bubble attachment, potential barrier.
For citation:

Lavrinenko A. A., Golberg G. Yu., Shrader E. A., Sarkisova L. M., Kuznetsova I. N. Talcum particle–air bubble attachment in the presence of carboxymethyl cellulose depressant. MIAB. Mining Inf. Anal. Bull. 2021;(11):68-79. [In Russ]. DOI: 10.25018/0236_ 1493_2021_11_0_68.

Acknowledgements:
Issue number: 11
Year: 2021
Page number: 68-79
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236_1493_2021_11_0_68
Article receipt date: 15.09.2021
Date of review receipt: 27.09.2021
Date of the editorial board′s decision on the article′s publishing: 10.10.2021
About authors:

A.A. Lavrinenko1, Dr. Sci. (Eng.), Head of Laboratory, e-mail: lavrin_a@mail.ru,
G.Yu. Golberg1, Dr. Sci. (Eng.), Leading Researcher, e-mail: gr_yu_g@mail.ru,
E.A. Shrader1, Cand. Sci. (Eng.), Leading Researcher, e-mail: Leonorashrader@mail.ru,
L.M. Sarkisova1, Cand. Sci. (Eng.), Senior Researcher, e-mail: lidasar@mail.ru,
I.N. Kuznetsova1, Cand. Sci. (Eng.), Senior Researcher, e-mail: iren-kuznetsova@mail.ru,
1 Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia.

 

For contacts:

G.Yu. Golberg, e-mail: gr_yu_g@mail.ru.

Bibliography:

1. Blatov I. A. Obogashchenie medno-nikelevykh rud [Beneficiation of copper-nickel ores], Мoscow, Izdatel'skiy dom «Ruda i metally», 1998, 224 p.

2. Tarasevich Yu. I., Aksenenko E. V. Hydrophobicity of talc basal surface. Colloid Journal. Коллоидный журнал. 2014, vol. 76, no. 4, pp. 526—532. [In Russ].

3. Nushtaeva A. V. Determination of the angle of selective wetting of polydisperse isomorphic solid particles. Advances in current natural sciences. 2019, no. 1, pp. 13—17. [In Russ].

4. Wallqvist V. Interactions between non-polar surfaces in water: Focus on talc, pitch and surface roughness effects: Doctoral Thesis. Stockholm, Sweden: the Royal Institute of Technology, 2009, 152 p.

5. Guo-hua Gu, Zhixiang Chen, Kaile Zhao, Siyu Song, Shuangke Li, Chong-qing Wang The effect of a novel depressant on the separation of talc and copper-nickel sulfide ore. Physicochemical Problems of Mineral Processing. 2019, vol. 55, no. 1, pp. 116—127.

6. Matveeva T. N., Gromova N. K., Lantsova L. B. Adsorption of tannin-bearing organic reagents on stibnite, arsenopyrite and chalcopyrite in complex gold ore flotation. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no. 3, pp. 134—142. [In Russ].

7. Krasavtseva E. A., Goryachev A. A. Review of methods of talc depression at the flotation of copper-nickel ores. Transactions Kola Science Center. 2019, vol. 10, no. 6(1), pp. 149—154. [In Russ].

8. Wei Deng, Longhua Xu, Jia Tian, Yuehua Hu,Yuexin Han Flotation and adsorption of a new polysaccharide depressant on pyrite and talc in the presence of a pre-adsorbed xanthate collector. Minerals. 2017, vol. 7, no. 3.

9. Qian G., Bo F., Danping Z., Jujie G. Flotation separation of chalcopyrite from talc using carboxymethyl chitosan as depressant. Physicochemical Problems of Mineral Processing. 2017, vol. 53, no. 2, pp. 1255—1263.

10. Manono M., Corin K., Wiese J. The effect of the ionic strength of process water on the interaction of talc and CMC: implications of recirculated water on floatable gangue depression. Minerals. 2019, vol. 9, no. 4.

11. Runpeng Liao, Jiu-shuai Deng, Hao Lai, Jiaozhong Cai, Zhang X., Wen S., Hua Yang, Jianying Deng, Fang J., Xuesong Sun An overview of technologies and selective depressing agents for separating chalcopyrite and talc. International Journal of Metallurgical & Materials Engineering. 2018, vol. 4.

12. Kol'tsov V. B., Kondrat'eva O. V. Teoreticheskie osnovy zashchity okruzhayushchey sredy [Theoretical basis of environmental protection], Moscow, Prometey, 2018, 734 p.

13. Morris G., Ralston J. Polymer depressants at the talc-water interface: Adsorption isotherm, microflotation and electrokinetic studies. International Journal of Mineral Processing. 2002, vol. 67, no. 1, pp. 211—227.

14. Morris G. E. The adsorption characteristics of polymeric depressants at the talc-water interface: PhD thesis. Adelaida: University of South Australia, 1996. 214 p.

15. Kuznetsova I. N., Lavrinenko A. A., Shrader E. A., Sarkisova L. M. Reduction in flotation-active silicate recovery in bulk concentrate of low-sulphide platinum-metal ore. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 200—208. [In Russ]. DOI: 10.25018/0236-1493-201905-0-200-208.

16. Yoon R.-H., Mao L. Application of extended DLVO theory. IV: Derivation of flotation rate equation from first principles. Journal of Colloid and Interface Science. 1996, vol. 181, no. 2, pp. 613—626.

17. Yoon R.-H., Flinn D. H., Rabinovich Y. I. Hydrophobic interactions between dissimilar surfaces. Journal of Colloid and Interface Science. 1997, vol. 185, no. 2, pp. 363—370.

18. Yoon R.-H. The role of surface forces in flotation kinetics. Proceedings of the XXI International Mineral Processing Congress. Roma, 2000, pp. B8a-1-B8a-7.

19. Drzymala J., Vigdergauz V. E. Work and force of bubble-particle detachment as a measure of contact angle in flotation systems. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej. 2000, vol. 87, no. 28, pp. 3—11.

20. Alvarez-Silva M., Mirnezami M., Uribe-Salas A., Finch J. A. Point of zero charge, isoelectric point and aggregation of phyllosilicate minerals. Canadian Metallurgical Quarterly. 2010, vol. 49, no. 4, pp. 405—410.

21. Bahri Ersoy Influence of pH and chloride-based metal salts on coagulation/dispersion behavior of talc suspension. Separation Science and Technology. 2011, vol. 46, no. 9, pp. 1519—1527.

22. Guo Wei, Feng Bo, Peng Jinxiu, Zhang Wenpu, Zhu Xianwen Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc. Journal of Materials Research and Technology. 2019, vol. 8, no. 1, pp. 697—702.

23. Skrylyov L. D., Skrylyova T. L., Nebesnova T. V. Heterocoagulation model to isolate by flotation of fine-emulsified organic substances. Chemistry and chemical technology. 2004, vol. 47, no. 10, pp. 57—61. [In Russ].

24. Clarke A. N., Wilson D. J., Clarke J. H. Electrical aspects of adsorbing colloid flotation. VIII: Specific adsorption of ions by flocs. Separation Science and Technology. 1978, vol. 13, no. 7, pp. 573—586.

25. Clark M. M. Transport modeling for environmental engineers and scientists. 2nd edition. Hoboken, New Jersey: John Wiley & sons, Inc., 2009. 663 p.

26. Drzymala J. Mineral processing. Foundations of theory and practice of minerallurgy. 1st edition. Wroclaw: Wroclaw University of Technology, 2007, 510 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.