Enhancement of ventilation efficiency in blind roadways of potash mines by dust criterion

The ventilation airflow patterns and the resultant air quality (by the criterion of dust) at workplaces of operators of continuous miners and self-propelled cars are analyzed and compared using different ventilation methods in blind roadways of potash mines. Essential improvement of air quality in the breathing zones of operators of continuous miners and selfpropelled cars is possible with prevailing application of displacement ventilation mechanism (piston principle or ideal air flow) over the mixing ventilation mechanism. For the displacement ventilation mechanism in an enclosed space and to ensure an intense eddy flow in the face area, it is proposed to use the notions of upwind and downwind zones as conditionally clean and dirty micro-zones, respectively. Introduction of these notions, new in mine aerology, enables a deeper analysis of the air flow processes which define the air quality in the miners’ breathing zones. The proposed approach is based on the theoretical studies, field studies and computer-aided numerical modeling of two ventilation methods in blind faces—blowing and suction ventilation. In blind roadways of potash mines using continuous mining machines, blowing ventilation induces dustiness at workplaces of operators of continuous miners and self-propelled cars as against the suction method of airing. Thereby, suction ventilation, which is yet unapplied in potash mines in Russia, has great advantages and can essentially improve ventilation efficiency in blind roadways in potash mining using continuous mining machines.

Keywords: ventilation of blind roadways with continuous miners, potash mine, dust salt, ventilation method, continuous mining machine chain, air flow, micro-zoning, numerical modeling, dust generation.
For citation:

Fainburg G. Z., Isaevich A. G., Zaytsev A. V. Enhancement of ventilation efficiency in blind roadways of potash mines by dust criterion. MIAB. Mining Inf. Anal. Bull. 2021;(8):3850. [In Russ]. DOI: 10.25018/0236_1493_2021_8_0_38.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 19-77-30008.

Issue number: 8
Year: 2021
Page number: 38-50
ISBN: 0236-1493
UDK: 622.454
DOI: 10.25018/0236_1493_2021_8_0_38
Article receipt date: 11.09.2020
Date of review receipt: 07.12.2020
Date of the editorial board′s decision on the article′s publishing: 10.07.2021
About authors:

G.Z. Fainburg1, Dr. Sci. (Eng.), Professor, Chief Scientific Researcher, e-mail: faynburg@yandex.ru,
A.G. Isaevich1, Cand. Sci. (Eng.), Head of Sector, e-mail: aero_alex@mail.ru,
A.V. Zaytsev1, Dr. Sci. (Eng.), Head of Sector, e-mail: aerolog.artem@gmail.com,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.

 

For contacts:

A.G. Isaevich, e-mail: aero_alex@mail.ru.

Bibliography:

1. Kolesnichenko E. A., Artem'ev V. B., Kolesnichenko I. E., Lyubomishchenko E. I. Influence of the length of a dead-end development and ventilation mode on the concentration of methane in the face. Russian Mining Industry. 2010, no. 3, pp. 26—30. [In Russ].

2. Fainburg G. Z., Isaevich A. G. Analysis of microcirculation flows between microzones in face areas of blind shear stopes in potash mines with different ventilation methods. MIAB. Mining Inf. Anal. Bull. 2020, no. 3, pp. 58—73. [In Russ]. DOI: 10.25018/0236-1493-2020-3-0-58-73.

3. Faynburg G. Z., Semin M. A., Isaevich A. G. Interrelation of physical mechanisms, mathematical models and technical methods of airing dead-end mine workings. Gornoe ekho. 2020, no. 3, pp. 123—128. [In Russ].

4. Medvedev I. I. Provetrivanie kaliynykh rudnikov [Ventilation of potash mines], Moscow, Nedra, 1970.

5. Medvedev I. I., Krasnoshteyn A. E. Bor'ba s pyl'yu na kaliynykh rudnikakh [Dust control in potash mines], Moscow, Nedra, 1977.

6. Romanchenko S. B. Control of aero-dust-dynamic processes in the time of underground coal mining. Gornyi Zhurnal. 2014, no. 5, pp. 298—333. [In Russ].

7. Ivochkin A., Panyuk V., Sargaeva M., Dolgaya Yu., Tseluev E. Dustiness of mine air and measures to combat coal and rock dust. Energonadzor. 2015, no. 9(73), pp. 40. [In Russ].

8. Dremov A. V. Obosnovanie ratsional'nykh parametrov obespylivaniya v kombaynovom prokhodcheskom zaboe [Substantiation of rational parameters of dedusting in a shearer tunneling face], Candidate’s thesis, Moscow, MGGU, 2010.

9. Levin L. Yu., Isaevich A. G., Semin M. A., Gazizullin R. R. Dynamics of air-dust mixture in ventilation of blind drifts operating a team of cutter-loaders. Gornyi Zhurnal. 2015, no. 1, pp. 72–75. [In Russ].

10. Faynburg G. Z., Ovsyankin A. D., Vaysman O. Ya., Shalaev S. V. Experience in the application of the suction method for ventilating combine workings at the Verkhnekamsk potash mines. Sovershenstvovanie razrabotki solyanykh mestorozhdeniy: mezhvuzovskiy sbornik nauchnykh trudov [Improving the development of salt mines: interuniversity collection of scientific papers], Perm, 1990, pp. 122—127. [In Russ].

11. Xu G., Luxbacher K., Ragab S., Xu J., Ding X. Computational fluid dynamics applied to mining engineering: a review. International Journal of Mining, Reclamation and Environment. 2016, vol. 31, no. 4, pp. 251—275.

12. Tariq F., Bekir G. Evaluation of line brattice length in an empty heading to improve air flow rate at the face using CFD. International Journal of Mining Science and Technology. 2017, vol. 27, no. 2, pp. 253—259.

13. Roghanch P., Kocsis K. C. Improving the climatic conditions in development and production workings of hot underground mines by redesigning the auxiliary ventilation system: a case study. International Journal of Mining and Mineral Engineering. 2017, vol. 8, no. 4, pp. 280—293.

14. Carriere R., McGuire C., McLaren E., Witow D. Studying operational improvements in blast gas clearing using ventilation control. Proceedings of the 16th North American Mine Ventilation Symposium. 2017, pp. 19.7–19.16.

15. Semin M. A., Levin L. Yu. Theoretical research of heat exchange between air flow and shaft lining subject to convective heat transfer. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 151–167. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-151-167.

16. Medvedev I. I., Krasnoshteyn A. E. Aerologiya kaliynykh rudnikov [Aerology of potash mines], Sverdlovsk, UrO AN SSSR, 1990, 249 p.

17. Landahl H. D. On the remonal of air-bornedrop-lets by human respiatori tract. The Bulletin of Mathematical Biophysics. 1980, vol. 12, pp. 43–56.

18. Weibel E. T. Morphometry of the human lung. Berlin, 1963. 156 p.

19. Kosyachenko G. E. Gigienicheskie osnovy kompleksnoy otsenki dobychi kaliynykh rud Belarusi i ratsional'nogo ispol'zovaniya speleosredy mestorozhdeniya [Hygienic foundations of a comprehensive assessment of the extraction of potash ores in Belarus and the rational use of the speleological environment of the deposit], Doctor’s thesis, 2004, 38 p.

20. Zhikharev S. Ya., Rodionov V. A., Pikhkonen L. V. Innovative methods for investigating technological properties and explosion/fire risk data of coal dust. Gornyi Zhurnal. 2018, no. 6, pp. 45—49. [In Russ]. DOI: 10.17580/gzh.2018.6.09.

21. Kolesov E. V. Development of a method for calculating the amount of air required for ventilation of dead-end tunneling workings after blasting operations. Gornoe ekho. 2019, no. 3, pp. 80—84. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.