Enhancement of ventilation system energy efficiency through the change of aerodynamic characteristics in skip shafts in deep mines

The increasing production outputs in underground mining leads to the increased air requirements for mine ventilation. Mine air supply can be enhanced by adding the mine ventilation system with the existing non-airing shafts which are the skip shafts, as a rule. Air delivery in skip shafts can consume much energy as the shafts have a small diameter and a plenty of process equipment installed. Aimed to assess expedience of converting skip shaft SS-1 in NorNickel’s Oktyabrsky Mine to an air supply shaft, the energy consumption of the shaft ventilation is analyzed as function of the shaft diameter, air flow velocity and the aerodynamic drag factor. The energy consumption of shaft ventilation is not higher than 20% of total energy spent to maintain air flow rate in all underground openings at the shaft diameters from 6.5 m and larger and at the air velocities not less than 9 m/s in the shaft. The theoretical analysis of air distribution in the mine versus the aerodynamic drag factor and shaft diameter shows that the most effective approach to reducing the linear ventilation energy input at any air velocities in the shaft is the decrease in the aerodynamic drag factor. This is a hard hitting objective as it requires re-equipment of the shaft and the mining process shutdown.

Keywords: mine ventilation, skip shaft, energy consumption, numerical modeling, energy efficiency, aerodynamic drag factor, shaft diameter, air velocity.
For citation:

Pospelov D. A., Zaitsev A. V., Semin M. A., Maltsev S. V., Mizonov E. N. Enhancement of ventilation system energy efficiency through the change of aerodynamic characteristics in skip shafts in deep mines. MIAB. Mining Inf. Anal. Bull. 2021;(9):135-144. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_135.


The study was supported by the Russian Science Foundation, Project No. 19-77-30008.

Issue number: 9
Year: 2021
Page number: 135-144
ISBN: 0236-1493
UDK: 622.4
DOI: 10.25018/0236_1493_2021_9_0_135
Article receipt date: 02.12.2020
Date of review receipt: 10.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.08.2021
About authors:

D.A. Pospelov1, Junior Researcher, e-mail: dimapospelov7@gmail.com,
A.V. Zaitsev1, Dr. Sci. (Eng.), Head of Sector,
M.A. Semin1, Cand. Sci. (Eng.), Researcher,
S.V. Maltsev1, Cand. Sci. (Eng.), Engineer,
E.N. Mizonov, Deputy Director of Mining Department at OJSC MMC Norilsk Nickel of developing mining operations, OJSC MMC Norilsk Nickel, Moscow, Russia,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, Perm, Russia.


For contacts:

D.A. Pospelov, e-mail: dimapospelov7@gmail.com.


1. Dziurzyński W., Krach A., Palka T. Airflow sensitivity assessment based on underground mine ventilation systems modeling. Energies. 2017, vol. 10, no. 10, p. 1451. DOI: 10.3390/ en10101451.

2. Kruglov Yu. V. Modelirovanie sistem optimal'nogo upravleniya vozdukhoraspredeleniem v ventilyatsionnykh setyakh podzemnykh rudnikov [Modeling of systems for optimal air distribution control in ventilation networks of underground mines], Candidate’s thesis, Perm, 2006, 170 p.

3. Mal'tsev S. V. Issledovanie i razrabotka sposobov opredeleniya aerodinamicheskikh parametrov slozhnykh ventilyatsionnykh sistem podzemnykh rudnikov [Research and development of methods for determining the aerodynamic parameters of complex ventilation systems of underground mines], Candidate’s thesis, Perm, 2020, 148 p.

4. Kempson W. J. Designing energy-efficient mineshaft systems. Essays Innovate. 2014, no. 9, pp. 76—79.

5. Semin M. A., Levin L. Yu. Theoretical research of heat exchange between air flow and shaft lining subject to convective heat transfer. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 151– 167. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-151-167.

6. Maltsev S. V., Kazakov B. P., Isaevich A. G., Semin M. A. Air exchange dynamics in the system of large cross-section blind roadways. MIAB. Mining Inf. Anal. Bull. 2020, no. 2, pp. 46– 57. [In Russ]. DOI: 10.25018/0236-1493-2020-2-0-46-57.

7. Rukovodstvo po proektirovaniyu ventilyatsii ugol'nykh shakht [Guidelines for the design of ventilation of coal mines], Moscow, Nedra, 1975, 238 p.

8. Kempson W. J., Webber-Youngman R. C. W., Meyer J. P. Optimizing shaft pressure losses through computational fluid dynamics modelling. Applied Thermal Engineering. 2015, vol. 90, pp. 1098—1108.

9. Rubel A. A. Research of aerodynamic resistance of various types of shaft reinforcement structures. Geotechnical mechanics. 2017, no. 136, pp. 221—232.

10. Deen J. B. Field verification of shaft resistance equations. Proceedings of the 5th US Mine Ventilation Symposium. 1991, pp. 647—655.

11. Pospelov D. A., Zaitsev A. V., Semin M. A. Substantiation of the maximum permissible air velocity in the shafts by the factor of aerodynamic load on technological equipment. Gornoe ekho. 2020, no. 1 (78), pp. 90—94. [In Russ].

12. McPherson M. J. An analysis of the resistance and airflow characteristics of mine shafts. Fourth International Mine Ventilation Congress, Brisbane, Queensland. 1988.

13. Federal'nye normy i pravila v oblasti promyshlennoy bezopasnosti «Pravila bezopasnosti pri vedenii gornykh rabot i pererabotke tverdykh poleznykh iskopaemykh»: utv. prikazom Rostekhnadzora ot 11.12.2013 no. 599 [Federal norms and rules in the field of industrial safety «Safety rules for mining and processing of solid minerals»: approved by order of Rostekhnadzor dated 11.12.2013 no. 599], 2014, 122 p. [In Russ].

14. Ivanovskiy I. G. Shakhtnye ventilyatory: Uchebnoe posobie [Mine fans. Educational aid], Vladivostok, Izd-vo DVGTU, 2003, 196 p.

15. Chatterjee A., Zhang L., Xia X. Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff. Applied Energy. 2015, vol. 146, pp. 65–73.

16. De Souza E. Improving the energy efficiency of mine fan assemblages. Applied Thermal Engineering. 2015, vol. 90. pp. 1092–1097.

17. Levit B. V., Borshevskiy S. V., Prokopov A. Yu. The main directions of improving the drilling of mine shafts of large diameter. MIAB. Mining Inf. Anal. Bull. 2012, no. 6, pp. 39—46. [In Russ].

18. Skochinskiy A. A., Ksenofontova A. I., Kharev A. A. Aerodinamicheskoe soprotivlenie shakhtnykh stvolov i sposoby ego snizheniya [Aerodynamic resistance of mine shafts and ways to reduce it], Moscow, Ugletekhizdat, 1953, 363 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.