Improving the energy efficiency of the electric traction drive of a haul truck

The article is devoted to increasing energy efficiency of traction electric drive of haul truck, due to the use of energy efficient energy converter. Improvement of on-board energy converter, as a component of traction electric drive, is the most important task of increasing energy efficiency of an autonomous power supply of a haul truck. As an on-board power converter, traditional inverters are used on dump trucks, but their energy performance, namely efficiency and power factor can be significantly increased. This article provides information about multilevel inverters as a more energy-efficient replacement for traditional inverters. The use of these multilevel inverters can fundamentally change the energy consumption profile of dump trucks, leading to increased operating efficiency, i.e. energy savings and reduced environmental impact. A new fan-type multilevel inverter with improved topology, in comparison with traditional multilevel inverters, is proposed to improve the energy efficiency of a haul truck traction drive. Simulation modeling of the improved fan-type inverter topology is given. To demonstrate the positive effect of implementing the proposed topology, a comparative analysis of simulation results of a traditional bridge inverter, a five-level inverter with a neutral point, and an advanced fan-type inverter is given.

Keywords: multilevel inverter, advanced fan-type inverter, increasing of traction electric drive energy efficiency.
For citation:

Kapustin A. V., Shchurov N. I. Improving the energy efficiency of the electric traction drive of a haul truck. MIAB. Mining Inf. Anal. Bull. 2023;(10-1):229—244. [In Russ]. DOI: 10.25018/0236_1493_2023_101_0_229.

Issue number: 10
Year: 2023
Page number: 229-244
ISBN: 0236-1493
UDK: 622.6, 621.31
DOI: 10.25018/0236_1493_2023_101_0_229
Article receipt date: 18.04.2023
Date of review receipt: 05.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

Kapustin A. V.1, PhD student, e-mail:;
Shchurov N. I.1, Head of the department, Professor, e-mail:;
1 Novosibirsk State Technical University, 630073, Novosibirsk, Russia.

For contacts:

Kapustin A. V., e-mail:


1. Dubinkin D. M., Kartashov A. B., Arutyunyan G. A., Buzunov N. V., Sorokin K. P., Yalyshev A. V. Current state of the art and technologies in the field of quarry dump trucks with energy storage devices. Mining equipment and electromechanics. 2020, no. 6(152), pp. 31–42. [In Russ]. DOI: 10.26730/1816-4528-2020-6-31−42.

2. Huawei Zhang, Yong Ma, Zhenzhong Yang, Lijun Wang, Shuman Guo, Bin Hao. Study on energy conservation and emission reduction of pure electric non-road mining dump truckс. E3S Web of Conferences 268 VESEP2020, 2021. URL: https://doi. org/10.1051/e3sconf/202126801025.

3. Vinogradov A. B., Gnezdov N. E., Chistoserdov V. L., Korotkov A. A. Performance Buildup of Electrical Traction Equipment of Mining Dump Trucks. Sbornik trudov XI Mezhdunarodnoj (XXII Vserossijskoj) konferencii po avtomatizirovannomu jelektroprivodu AJeP 2020, Sankt-Peterburg. Sankt-Peterburg, Federal’noe gosudarstvennoe avtonomnoe obrazovatel’noe uchrezhdenie vysshego obrazovanija “Nacional’nyj issledovatel’skij universitet ITMO”. 2021, pp. 53–57. [In Russ].

4. Malafeev S. I., Serebrennikov N. A. Increasing energy efficiency of mining excavators through upgrade of electrical equipment and control systems. Ugol. 2018, no. 10(1111), pp. 30–35. [In Russ]. DOI: 10.18796/0041-5790-2018-10−30−34.

5. Kuznetcov K. B., Gorozhankin A. N., Funk T. A., Khusainov S. N., Kruglov G. A., Korzgov A. V. Ways to decrease losses in electric drives and improvement of electrical safety during their service. Russian electrical engineering. 2017, no. 4, pp. 26–29. [In Russ]. DOI: 10.3103/S1068371217040125.

6. Berezhnov D. A. Mnogourovnevyj avtonomnyj invertor naprjazhenija. The Railway Transport magazine. 2021, no. 7, pp. 42–43. [In Russ].

7. Franquelo L. G., Rodriguez J., Leon J. I., Kouro S., Portillo R., Prats M. A. M. The age of multilevel converters arrives. IEEE Industrial Electronics Magazine. 2008, vol. 2, no. 2, pp. 28–39. DOI: 10.1109/MIE.2008.923519.

8. Kouro S., Malinowski M., Gopakumar K., Pou J., Franquelo L. G., Bin W., Rodriguez J., Perez M. A., Leon J. I. Recent Advances and Industrial Applications of Multilevel Converters. IEEE Trans. Ind. Electron. 2010, vol. 57, no. 8, pp. 2553–2580. DOI: 10.1109/TIE.2010.2049719.

9. Poorfakhraei A., Narimani M., Emadi A. A Review of Multilevel Inverter Topologies in Electric Vehicles: Current Status and Future Trends. IEEE Open Journal of Power Electronics. 2021, vol. 2, pp. 155–170. DOI: 10.1109/OJPEL.2021.3063550.

10. Balasubramanian M., Geetha B. T. Reduction of Harmonics in Multilevel Inverter using Phase Disposition PWM compared with Conventional PWM based on Efficiency. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), Uttar Pradesh, India. 2022, pp. 855–861. DOI: 10.1109/IC3I56241.2022.10072518.

11. Panda A., Panda G. Modular multilevel inverter configuration with lesser switch counts. 2022 4th International Conference on Energy, Power and Environment (ICEPE), Shillong, India. 2022, pp. 1–5. DOI: 10.1109/ICEPE55035.2022.9798098.

12. Haw L. K., Jefry N. A., Ing W. K. The New Hybrid Multilevel Inverter with Reduced Number of Switches. 2021 IEEE 11th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia. 2021, pp. 337–341. DOI: 10.1109/ICSET53708.2021.9612532.

13. Rao S. N., Kumar D. V. A., Babu C. S. New multilevel inverter topology with reduced number of switches using advanced modulation strategies. 2013 International Conference on Power, Energy and Control (ICPEC), Dindigul, India. 2013, pp. 693– 699. DOI: 10.1109/ICPEC.2013.6527745.

14. Nabae A., Takahashi I., Akagi H. A New Neutral-Point-Clamped PWM Inverter. IEEE Transactions on Industry Applications. 1981, vol. IA-17, no. 5, pp. 518–523. DOI: 10.1109/TIA.1981.4503992.

15. Bouamrane O., Khalili T., Tyass I., Rafik M., Raihani A., Bahati L., Benhala B. Flying capacitors multilevel inverter: architecture, control and active balancing. E3S Web of Conferences. 2022, vol. 336. DOI: 10.1051/e3sconf/202233600039.

16. Gaikwad A., Arbune P. A. Study of cascaded H-Bridge multilevel inverter. 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Pune, India. 2016, pp. 179–182. DOI: 10.1109/ICACDOT.2016.7877574.

17. Kapustin A. V., Schurov N. I. An Overview of Main Multilevel Inverter Topologies. Russian electrical engineering. 2023, no. 5, pp. 43–48. [In Russ].

18. Burguete E., López J., Zabaleta M. New Five-Level Active Neutral-PointClamped Converter. IEEE Transactions on Industry Applications. 2015, vol. 51, no. 1, pp. 440–447. DOI: 10.1109/TIA.2014.2334737.

19. Salcu S. I., Iuoraş A. M., Szekely N. C., Bojan M., Rusu C. G., Fasolă G. I. Active Power Factor Compensation Based on a Geometric Phase Control Scheme. 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Dubrovnik, Croatia. 2020, pp. 130–135. DOI: 10.1109/ PEDG48541.2020.9244319.

20. ElGebaly A. E., El-Wahab Hassan A., El-Nemr M. K. Reactive Power Compensation by Multilevel Inverter STATCOM for Railways Power Grid. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg and Moscow, Russia. 2019, pp. 2094–2099. DOI: 10.1109/ EIConRus.2019.8657058.

21. Terovanesov M. R., Litvinova E. A., Taranov S. V. The issues of compensation of reactive power. Sbornik nauchnyh trudov Doneckogo instituta zheleznodorozhnogo transporta. 2017, no. 47, pp. 4–10. [In Russ].

22. Jianyao H., Juan W., Hemeng P., Qi P., Qingli H. Application of fuzzy logic algorithm for optimization of control strategy in electric vehicles. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China. 2017, pp. 2042–2045. DOI: 10.1109/IAEAC.2017.8054375.

23. Zherebkin B. V. Vector control system for traction electric drive of mining electric locomotives using fuzzy logic apparatus: Abstract of Candidate of Technical Sciences thesis, Sankt-Peterburg, 2005, 22 p. [In Russ].

24. Shonin O. B., Pronko V. S. Energy-efficient control of asynchronous motor drive with current refinement of the loss minimum on the basis of fuzzy logic. Journal of Mining Institute. 2016, no. 218, pp. 270–280. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.