Digital twin quality improvement for mines through standardization of attribute content for 3D GIS-based geotechnical modeling

Currently, mining companies are increasingly implementing digitalization in their production. At the same time, it is worth noting that the role of standards in creating “digital mines” and “mines of the future” is difficult to overestimate. Digitalization and standardization are closely interrelated processes. The only correct way to integrate the devices, information systems and digital models used in mining enterprises is based primarily on technical standards and regulations, which in turn strengthen the Foundation for intelligent digital production in the industry. In order to ensure the compatibility of mining and geological, mining and technological and technical parameters, intelligent management systems and data analysis, as well as the interaction of various departments of mining enterprises with government services, it is necessary to create industry standards for digital production. This article highlights the main stages of the creating process a frame model of the excavation chamber in the GGIS, analyzes the standard set of attributes frame models of element’s the underground mining system solid mineral deposits (excavation chambers, treatment faces, technological units, panels, blocks, floors of preparatory workings, security pillars, etc.) in the GGIS and user attributes necessary for formalization of technological 3D models. The rules of attributive filling technological 3D models created in mining and geological information systems for standardization of digital production at an underground mine are proposed. The use of such regulations in the future makes it possible to carry out state analysis of 3D design models in an automated mode, and determines the transition to the use of regulatory and technical documentation in electronic form as part of digital “images” of mining enterprises

Keywords: Mining and geological information systems (GGIS), 3D modeling in the mining industry, digital “image” of a mining enterprise, attributes of technological 3D models in GGIS, development of ore deposits’s georesources, standardization of mining digital production.
For citation:

Stadnik D.A., Gabaraev O.Z., N.M. Stadnik, Grigoryan K.L. Digital twin quality improvement for mines through standardization of attribute content for 3D GIS-based geotechnical modeling. MIAB. Mining Inf. Anal. Bull. 2020;(11-1):202-212. [In Russ]. DOI: 10.25018/0236-14932020-111-0-202-212.

Issue number: 11
Year: 2020
Page number: 202-212
ISBN: 0236-1493
UDK: 622.012:004.9:681.3.01
DOI: 10.25018/0236-1493-2020-111-0-202-212
Article receipt date: 02.07.2020
Date of review receipt: 04.09.2020
Date of the editorial board′s decision on the article′s publishing: 10.10.2020
About authors:

Stadnik D.A.1, Dr. Sci. (Eng.), professor of mining Department;
Gabaraev O.Z.1, Dr. Sci. (Eng.), professor, head of the mining Department;
Stadnik N.M.1, Cand. Sci. (Eng.), associate professor of mining Department;
Grigoryan K.L.1, 6th level student;
1North Caucasian Mining and Metallurgical Institute (State Technological University), 362021, Vladikavkaz, Russia.


For contacts:

1. Klyuev R.V., Bosikov I.I., Majer A.V., Gavrina O.A. Complex analysis of the use of effective technologies to improve the sustainable development of the natural and technical system. Sustainable Development of Mountain Territories. 2020. no. 2. T. 12. pp. 283—290. [In Russ]

2. Noone, G. What does the future hold for automation in the mining industry? World mining frontiers. 2019. T. 2. C. 18—21. [In Russ]

3. Sajt publikacij svedenij o razrabotkah i ispol’zovanii geoinformacionnyh sistem [Elektronnyj resurs]. Rezhim dostupa: (data obrashcheniya: 25.09.2020). [In Russ]

4. Golik V.I., Razorenov Yu.I., Karginov K.G. Basis of sustainable development of the RSOAlania-mining industry. Sustainable Development of Mountain Territories. 2017. no. 2. T. 9. pp. 163—171. [In Russ]

5. Kuznecov Yu.N., Stadnik D.A., Stadnik N.M., Kurcev B.V. Automated detection of structures of bedded deposits. Gornyj zhurnal. 2016. no. 2. pp. 86—91. [In Russ]

6. Golik V.I., Gabaraev L., Maslennikov O.Z., Khasheva S.A., Shulgaty Z.M.. The provision of development conversion perspectives into undeground one for Russian ironproviding prospects for conversion of development to underground for the development of Russian iron ore deposits. The social sciences (Pakistan). 2016. no. 18. T. 11. pp. 4348—4351 [In Russ]

7. Stadnik N.M. Basic methodological principles for the formation of an integrated geoinformation base for forecasting and evaluating coal reserves . Gornaya promyshlennost’. 2016. no. 3(127). pp. 73—76. [In Russ]

8. Stadnik, D.A. Justification of functional subsystems of the unified industry system of automated design of coal mines. Ugol’. 2017. no. 10(1099). pp. 52—56. [In Russ]

9. Klyuev R.V., Bosikov I.I., Egorova E.V., Gavrina O.A. Mining and Evaluation of geological and mining conditions of the Severny quarry using mathematical models. Sustainable Development of Mountain Territories. 2020. no. 3. pp. 418—427. [In Russ]

10. Golik V.I., Luk’yanov V.G., Hasheva Z.M. Justification of the possibility and feasibility of using ore dressing tailings for the manufacture of hardening mixtures. Izvestiya tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2015. no. 5. T. 326. pp. 6—14. [In Russ]

11. Golik V.I., Komashchenko V.I. Waste of ferruginous quartzite enrichment as a raw material for metal recovery and use as filling mixtures. Gornyj zhurnal. 2017. pp. 43—47. [In Russ]

12. Kaputin, Yu.E. Informacionnye tekhnologii planirovaniya gornyh rabot (dlya gornyh inzhenerov) [Information technologies for planning mining operations (for mining engineers)]. Saint-Petersburg: Nedra, 2004. 424 p. [In Russ]

13. Wang, Y. Coal mine safety production forewarning based on improved BP neural network / Y. Wang, C. Lu, C. Zuo. International Journal of Mining Science and Technology. 2015. no. 2. T. 25. C. 319—324.

14. Malkin A.S., Puchkov L.A., Salamatin A.G., Eremeev V.M.; pod red. Puchkova L.A. Proektirovanie shaht: ucheb. dlya studentov vuzov, obuchayushchihsya po special’nostyam «Tekhnol. i tekhnika razvedki polez. iskopaemyh», «Podzem. razrab. mestorozhdenij polez. iskopaemyh» [Design of mines: textbook. for University students studying in the specialty «Technol. and the technique of intelligence is useful. resources», «Underground. conver. he got up. fossils»]. 4-e izd. Moscow: Izd-vo Akademii gornyh nauk, 2000. 374 p. [In Russ]

15. An T.V., Klyuev R.V., Bosikov I.I., Cidaev B.S. Evaluation of the reliability of the ventilation control system at mining facilities. Sustainable Development of Mountain Territories. 2018. no. 1. T. 10. pp. 117—124. [In Russ]

16. Groshong, R.H. 3-D structural geology: A practical guide to quantitative surface and subsurface map interpretation / R.H. Groshong. Springer Berlin Heidelberg, 2006. 400 p.

17. Kopylov, A.S. Increasing the stability of exhaust funnels when changing the fractional composition of the produced ore. Sustainable Development of Mountain Territories. 2019. no. 4. T. 11. pp. 535—546. [In Russ]

18. Gabaraev O.Z., Dmitrak Yu.V., Drebenshtedt K., Savelkov V.I. Regularities of interaction of destroyed geomaterials and ore-containing massif during mining of interspersed ores. Sustainable Development of Mountain Territories. 2017. no. 4. T. 9. pp. 406—413. [In Russ]

19. Petitjean, F. Skopus: Mining top-k sequential patterns under leverage / F. Petitjean, T. Li, N. Tatti, G.I. Webb. Data Mining and Knowledge Discovery. 2016. no. 5. T. 30. pp. 1086—1111.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.