Increasing the quality of fragmentation of blasting rock mass ased on accounting for structural features of massif in the blast design

For the most part, when developing the quarries of building materials, an array that is subject to explosion, especially when the granite is extracted for the subsequent receipt of building materials, has a complex structure both in morphological terms and in blockiness. The exploded array may contain monolithic, large —block and small —block groups of rocks that have various cracking. Moreover, the granites themselves can be different, which complicates the explosion of such complex arrays. There is a high probability of the release of a large volume of oversize fractions, and especially, when underestimated or overstated the line of the least resistance. In addition to the zones of unregulated crushing, when exploding complex arrays, the indicated problem is observed when the exploded rock mass is released along the first row of boreholes. This study presents an approach to the spatial optimization of the first row of explosive borehole in order to reduce the release of oversized fractions in the much pile of blasted rock based on the accounting of the structural features of an array, information about which was obtained using specialized software systems and unmanned aerial vehicles. This article discusses the method of photogrammetry, which allows using unmanned aerial vehicles to collect data for further construction of analytical 3D models in specialized software. The article is presented the method of mapping of ledges, which allows to evaluate the structural indicators of the slope. Taking into account the structure of the array, design decisions are made to set the borehole of the exploded unit by profiling, which in turn leads to a better fragmentation of blasted rock mass.

Keywords: explosion, open pit, blockiness, fracturing, UAV, mapping, 3D models, boreholes profiling, rock mass, particle size distribution.
For citation:

Isheisky V. A., Ryadinskii D. E., Magomedov G. S. Increasing the quality of fragmentation of blasting rock mass based on accounting for structural features of massif in the blast design. MIAB. Mining Inf. Anal. Bull. 2023;(9-1):79-95. [In Russ]. DOI: 10.25018/0236_ 1493_2023_91_0_79.

Issue number: 9
Year: 2023
Page number: 79-95
ISBN: 0236-1493
UDK: 622.235.5
DOI: 10.25018/0236_1493_2023_91_0_79
Article receipt date: 02.05.2023
Date of review receipt: 01.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

V.A. Isheisky1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0003-1007-6562,
D.E. Ryadinskii1, Graduate Student, e-mail:, ORCID ID: 0000-0002-5765-1811,
G.S. Magomedov, General Director, JSC «Gavrilovskoye Quarry Administration», 188870, Leningrad Region, Gavrilovo Settlement, Russia, e-mail:,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

V.A. Isheisky,


1. Marinin M., Marinina O., Wolniak R. Assessing of losses and dilution impact on the cost chain: Case study of gold ore deposits. Sustainability. 2021, vol. 13, no. 7, article 3830. DOI: 10.3390/su13073830.

2. Ivanov S. L., Ivanova P. V., Kuvshinkin S. Yu. Evaluation of the production of mining excavators of a promising model range in rare operating conditions. Journal of Mining Institute. 2020, vol. 242, pp. 228—233. [In Russ]. DOI: 10.31897/pmi.2020.2.228.

3. Yudi Tang, Lei He, Wei Lu, Xin Huang, Hai Wei, Huaiguang Xiao A novel approach for fracture skeleton extraction from rock surface images. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 142, article 104732. DOI: 10.1016/j.ijrmms.2021.104732.

4. Alenichev I. A., Rakhmanov R. A. Study of empirical patterns of rock mass dumping by explosion onto the free surface of a quarry ledge. Journal of Mining Institute. 2021, vol. 249, pp. 334—341. [In Russ]. DOI: 10.31897/pmi.2021.3.2.

5. Korchak S. A., Abaturova I. V., Savintsev I. A., Storozhenko L. A. Assessment of the state of a rock mass to identify potentially hazardous areas of a planned quarry. News of the Ural State Mining University. 2022, no. 3(67), pp. 90—99. [In Russ]. DOI: 21440/2307-2091-20223-90-99.

6. Gorbunova N., Kapitonova I., Mirkushov O. Comparative analysis rock mass after explosions in the quarry liqhobong. IOP Conference Series: Earth and Environmental Science. 2021, vol. 720, no. 1, article 012080. DOI: 10.1088/1755-1315/720/1/012080.

7. Moldavan D. V., Chernobay V. I., Sokolov S. T., Bazhenova A. V. Constructive solutions for locking explosion products in an explosive environment. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 5—17. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_5.

8. Marinin M. A., Evgrafov M. V., Dolzhikov V. V. Production of blasting operations for a given granulometric composition of ore within the concept of «mine-to-mill»: current state and prospects. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021, vol. 332, no. 7, pp. 65—74. [In Russ]. DOI: 10.18799/24131830/2021/7/3264.

9. Bamford T., Medinac F., Esmaeili K. Continuous monitoring and improvement of the blasting process in open pit mines using unmanned aerial vehicle techniques. Remote Sensing. 2020, vol. 12, no. 17, article 2801. DOI: 10.3390/rs12172801.

10. Battulwar R., Zare-Naghadehi M., Emami E., Sattarvand J. A state-of-the-art review of automated extraction of rock mass discontinuity characteristics using three-dimensional surface models. Journal of Rock Mechanics and Geotechnical Engineering. 2021, vol. 13, no. 4, pp. 920—936. DOI: 10.1016/j.jrmge.2021.01.008.

11. Gaich A., Pötsch M. Blast optimization including automatic borehole placement and automatic rock mass characterization. Bergdagarna. Stockholm, 2020.

12. Saadoun A., Frej M., Boukarm R., Hadji R. Fragmentation analysis using digital image processing and an empirical model (KuzRam): A comparative study. Journal of Mining Institute. 2022, vol. 257, pp. 822—832. [In Russ]. DOI: 10.31897/pmi.2022.84.

13. Pyra J., Gądek K. Possible ways of optimizing blasting operations using O-Pitblast software. Materiały Wysokoenergetyczne. 2020, vol. 12, no. 2, pp. 124—138. DOI: 10.22211/ matwys/0194.

14. Singh S. K., Kanarje Raval S. Automated rock mass discontinuity set characterisation using amplitude and phase decomposition of point cloud data. International Journal of Rock Mechanics and Mining Sciences. 2022, vol. 152, article 105072. DOI: 10.1016/j.ijrmms.2022.105072.

15. Kawalec W., Krol R., Suchorab N., Szymanski M. The analysis and assessment of grain size distribution on the example of a chosen granite mine. IOP Conference Series: Earth and Environmental Science. 2019, vol. 362, no. 1, article 012113. DOI: 10.1088/1755-1315/362/1/012113.

16. Adjiski V., Panov Z., Popovski R., Stefanovska R. Application of photogrammetry for determination of volumetric joint count as a measure for improved rock quality designation (RQD) index. Sustainable Extraction and Processing of Raw Materials Journal. 2021, vol. 2, no. 1, pp. 12—20. DOI: 10.5281/zenodo.5594940.

17. Kong D., Saroglou C., Wu F., Sha P., Li B. Development and application of UAV-SfM photogrammetry for quantitative characterization of rock mass discontinuities. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 141, article 104729. DOI: 10.1016/j. ijrmms.2021.104729.

18. Kaz'mina A. Yu. Obosnovanie parametrov burovzryvnykh rabot pri razrushenii skal'nykh porod skvazhinnymi zaryadami konechnoy dliny (na primere ZAO «Gavrilovskoe kar'eroupravlenie») [Substantiation of the parameters of drilling and blasting operations in the destruction of rock with borehole charges of finite length (on the example of CJSC «Gavrilovskoye Quarry Administration»], Candidate’s thesis, Saint-Petersburg, SPbGU, 2013, 20 p.

19. Buyer A., Aichinger S., Schubert W. Applying photogrammetry and semi-automated joint mapping for rock mass characterization. Engineering Geology. 2020, vol. 264, article 105332. DOI: 10.1016/j.enggeo.2019.105332.

20. Moomivand H., Seadati S., Allahverdizadeh H. A new approach to improve the assessment of rock mass discontinuity spacing using image analysis technique. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 143, article 104760. DOI: 10.1016/j. ijrmms.2021.104760.

21. Singh B. K., Mondal D., Shahid M., Saxena A., Roy P. N. S. Application of digital image analysis for monitoring the behavior of factors that control the rock fragmentation in opencast bench blasting: a case study conducted over four opencast coal mines of the Talcher Coalfields, India. Journal of Sustainable Mining. 2019, vol. 18, no. 4, pp. 247—256. DOI: 10.1016/j.jsm. 2019.08.003.

22. Miao Y., Zhang Y., Wu D., Li K., Yan X., Lin J. Rock fragmentation size distribution prediction and blasting parameter optimization based on the muck-pile model. Mining, Metallurgy & Exploration. 2021, vol. 38, pp. 1071—1080. DOI: 10.1007/s42461-021-00384-0.

23. Chen J., Huang H., Zhou M., Chaiyasarn K. Towards semi-automatic discontinuity characterization in rock tunnel faces using 3D point clouds. Engineering Geology. 2021, vol. 291, article 106232. DOI: 10.1016/j.enggeo.2021.106232.

24. Gusev V. N., Blishchenko A. A., Sannikova A. P. Study of a complex of factors influencing the error in the implementation of mine surveying of mountain objects using a geodetic quadrocopter. Journal of Mining Institute. 2022, vol. 254, pp. 173—179. [In Russ]. DOI: 10.31897/ pmi.2022.35.

25. Bar N., Kostadinovski M., Tucker M., Byng G., Rachmatullah R., Maldonado A., Pötsch M., Gaich A., McQuillan A., Yacoub T. Rapid and robust slope failure appraisal using aerial photogrammetry and 3D slope stability models. International Journal of Mining Science and Technology. 2020, vol. 30, no. 5, pp. 651—658. DOI: 10.1016/j.ijmst.2020.05.013.

26. Kong D., Wu F., Saroglou C. Automatic identification and characterization of discontinuities in rock masses from 3D point clouds. Engineering Geology. 2020, vol. 265, article 105442. DOI: 10.1016/j.enggeo.2019.105442.

27. Hu G. A drawing system for pole diagram and rose diagram of rock mass structural surface. Mobile Information Systems. 2021, vol. 2021, pp. 1—11. DOI: 10.1155/2021/965 2623.

28. Menegoni N., Giordan D., Perotti C., Tannant D. D. Detection and geometric characterization of rock mass discontinuities using a 3D high-resolution digital outcrop model generated from RPAS imagery — Ormea rock slope, Italy. Engineering Geology. 2019, vol. 252, pp. 145—163. DOI: 10.1016/j.enggeo.2019.02.028.

29. Moomivand H., Seadati S., Allahverdizadeh H. A new approach to improve the assessment of rock mass discontinuity spacing using image analysis technique. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 143, article 104760. DOI: 10.1016/j. ijrmms.2021.104760.

30. Afanasev P. I., Makhmudov K. F. Assessment of the parameters of a shock wave on the wall of an explosion cavity with the refraction of a detonation wave of emulsion explosives. Applied Sciences. 2021, vol. 11, no. 9, article 3976. DOI: 10.3390/app11093976.

31. Khokhlov S. V., Vinogradov Yu. I., Noskov A. P., Bazhenova A. V. Predicting displacements of ore body boundaries in generation of blasted rock pile. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 40—56. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_40.

32. Gustafsson R. Swedish blasting technique and mining SPI. Gothenburg, Sweden. 1973, pp. 1—328.

33. Roy P. P. Rock blasting: effects and operations. CRC Press, 2005, pp. 1—37.

34. Palmstrom A. Measurement and characterizations of rock mass jointing. In-Situ Characterization of Rocks. 2001, pp. 1—40.

35. Valkov V. A., Vinogradov K. P., Valkova E. O., Mustafin M. G. Creation of high-informative rasters based on high-power laser and aerial photography. Geodesy and Cartography. 2022, vol. 83, no. 11, pp. 40—49. [In Russ]. DOI: 10.22389/0016-7126-2022-989-11-40-49.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.