Increasing the reliability of traction network protection by means of monitoring

The problem of reliable functioning of the protections of feeders of the DC traction network has arisen since the beginning of the development of electric transport, the growth of the power of electric rolling stock and the speed of movement. To solve it, developed countries have proposed hundreds of devices aimed at improving the reliability of functioning, but the task has not been completely solved to date, and many proposals (patents) they remained unsold, including at traction substations of mining enterprises and electric rolling stock of quarry railway transport. The reason is that all types of protections reacted to one parameter: current, voltage, resistance, heating of current-carrying parts and others. The creation of digital devices made it possible to create sets of protections that respond to several signs of a transient process in the traction network, and their joint occurrence can characterize an emergency mode and issue a command to disconnect the line (feeder). The authors have determined, in some modes, the values of short-circuit (SC) currents and especially the rate of change of current (di/dt) have been clarified in monitoring, which can be used as a sign of short circuit in combination with other factors in digital protections. It is established that in case of breakdown of insulation or power semiconductor devices in converters of traction substations, the SC current depends on the parameters of the external power supply circuit and the converter unit and can reach 20...80 kA. The experience of operating the sets as part of the classical current-pulse protection (MIZ) and multi-channel digital terminal (Inter) revealed difficulties in choosing the types of digital terminal protections, determining their coverage area and settings, as well as coordination with the MIZ. Small currents of remote short circuits also pose a danger to electrical equipment, since in the vast majority of cases an electric arc occurs at the short circuit site, the voltage drop in which is 200... 500 V, a large amount of heat is released at the short circuit site. As a result of the research conducted for the West Siberian Railway, an algorithm was proposed for setting the protection settings of the terminal and the MIZ, determining their zones of action based on mathematical modeling and using monitoring of the traction network operating modes, which significantly increased the reliability of the protection kit. Thus, in case of any types of violations of the normal operation of the electric transport system at the mining enterprises, it is necessary to take measures to eliminate the dangerous consequences of these violations. These functions are performed by the protection of the corresponding element of the traction network of mining enterprises.

Keywords: power supply, traction network, short-circuit current, substation, protection, operational reliability, methodology, settings, monitoring, remote access.
For citation:

Kuznetsov S. M., Andriyashin S. N. Increasing the reliability of traction network protection by means of monitoring. MIAB. Mining Inf. Anal. Bull. 2022;(12-2):143—156. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_143.

Acknowledgements:
Issue number: 12
Year: 2022
Page number: 143-156
ISBN: 0236-1493
UDK: 621.355
DOI: 10.25018/0236_1493_2022_122_0_143
Article receipt date: 24.01.2022
Date of review receipt: 27.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

Kuznetsov S. M.1, Cand. Sci. (Eng.), Assistant Professor, e-mail: ksmetk@mail.ru;
Andriyashin S. N.1, assistant, e-mail: andriyashin.2014@corp.nstu.ru, ORCID ID: 0000-0003-1575-8933;
1 Novosibirsk State Technical University,630073, Novosibirsk, Russia.

 

For contacts:

Andriyashin S. N., e-mail: andriyashin.2014@corp.nstu.ru.

Bibliography:

1. Malafeev S. I., Malafeev S. S. K analizu energeticheskih processov v pitayushchej seti pri rabote kar’ernogo ekskavatora. MIAB. Mining Inf. Anal. Bull. 2020, no. 3, pp. 126–137. [In Russ]. DOI: 10.25018/0236-1493-2020-3-0−126−137.

2. Abramov B. I., Ivanov A. G., Shilenkov V. A., Kuz’min I. K., Shevyrev YU. V. Elektroprivod sovremennyh shahtnyh pod”yomnyh mashin. MIAB. Mining Inf. Anal. Bull. 2022, no. 5—2, pp. 145—162. [In Russ]. DOI: 10.25018/0236_1493_2022_52_0_145.

3. Murzintsev A., Korolev A., Zhgun K., Baembitov R. Short-circuit Current Reduction in Auxiliary Network of Traction Substations. Transportation Research Procedia. 2021, vol. 54, pp. 346–354, DOI: 10.1016/j.trpro.2021.02.082.

4. Boige F., Richardeau F., Lefebvre S., Cousineau M. SiC power MOSFET in shortcircuit operation: Electro-thermal macro-modelling combining physical and numerical approaches with circuit-type implementation. Mathematics and Computers in Simulation. 2019, vol. 158, pp. 375–386. DOI: 10.1016/j.matcom.2018.09.020.

5. Yang X., Gu J., Zheng T. Q., Zhao Z. Faults and reliability analysis of negative resistance converter traction power system. Microelectronics Reliability. 2020, vol. 114. DOI: 10.1016/j.microrel.2020.113911.

6. Farhadi M., Mohammed O. A. Protection of multi-terminal and distributed DC systems: Design challenges and techniques Electric Power Systems Research. 2017, vol. 143, pp. 715–727. DOI: 10.1016/j.epsr.2016.10.038.

7. Huo Q., Xiong J., Zhang N., Guo X., Wu L., Wei T. Review of DC circuit breaker application. Electric Power Systems Research. 2022, vol. 209. DOI: 10.1016/j. epsr.2022.107946.

8. Kuznetsov S. M., Orlova I. V., Lisichko O. I. Theory and a posteriori practical methods for calculating the reliability of electrical equipment. IOP Conference Series: Materials Science and Engineering. 2019, vol. 560. DOI:10.1088/1757−899X/560/1/012135.

9. Kuznetsov S. M., Myatezh A. V., Rozhkova M. V., Tenkovskaya S. A., Akifeva E. V., Ivanov A. V. Service system and monitoring of information terminals for protection of railway lines of long-distance trains. Journal of Physics: Conference Series. 2019, vol. 1333, iss. 4, art. 042023,6 p. DOI:10.1088/1742−6596/1333/4/042023.

10. Badyor M. P., Grechishnikov V. A., SHevlyugin M. V., Korol’ YU. N. Performance analysis of power equipment of power supply system of traction JSC “Russian Railways”, based on monitoring of traction substations in real-time. Elektronika i elektrooborudovanie transporta. 2011, no. 5−6, pp. 5–8. [In Russ].

11. Demidenko I. S., Yaroslavcev M. V., Krivova A. O. Mathematical modeling of transient processes in the traction network. Radioelektronika, elektrotekhnika i energetika: SHestnadcataya Mezhdunar. nauch.-tekhn. konf. studentov i aspirantov: Tez. dokl. V 3-h t. T.2, Moscow, Izdatel’skij dom MEI. 2010,207 p. [In Russ].

12. Arzhannikov B. A., Bader M. P., Burkov A. T., Kotel’nikov A. V., Nabojchenko I. O. Improving the basic requirements for the system and devices of DC traction power supply. Russian Electrical Engineering. 2016, no. 9, pp. 51–57. [In Russ].

13. Xia M., Zhou Y., Huang Y., Yang H., Tai Y. Research on Short-Circuit Characteristics of Subway DC Traction Power Supply System. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. 2020, pp. 3456–3460. DOI: 10.1109/ IECON43393.2020.9254651.

14. Radu P. V., Lewandowski M., Szelag A., Steczek M. Short-Circuit Fault Current Modeling of a DC Light Rail System with a Wayside Energy Storage Device. Energies. 2022, vol. 15. DOI: 10.3390/en15103527.

15. Teymourfar R., Fard R. N., Asaei B. Iman-Eini H. Energy recovery in a metro network using stationary supercapacitors. 2nd Power Electronics, Drive Systems and Technologies Conference. 2011, pp. 324–329. DOI: 10.1109/PEDSTC.2011.5742440.

16. Zharkov Yu. I., Figurnov E. P. The problems of organization the protection of the DC traction network from the short-circuit faults at the high current loads. Elektrifikaciya transporta. 2014, no. 7, pp. 28–31. [In Russ].

17. Yu L., He J. H., Hu J., Bo Z. Q., Li M. X., Yip T., Klimek A. Accurate track modeling for fault current on DC railways based on MATLAB/Simulink. Power and Energy Society General Meeting,2010 IEEE. 2010, pp.1–6. DOI: 10.1109/PES.2010.5590135.

18. Du F., He J. H., Yu L., Li M. X., Bo Z. Q., Klimek A. Modeling and Simulation of Metro DC Traction System with Different Motor Driven Trains. Power and Energy Engineering Conference (APPEEC), IEEE 2010 Asia-Pacific. 2010, pp. 1–4. DOI: 10.1109/ APPEEC.2010.5448372.

19. Sun L., Wu M., Sun J., Yang S. Simulation of Short-Circuit Fault Occurring on Subway Train. Proceedings of the 3rd International Conference on Electrical and Information Technologies for Rail Transportation (EITRT). 2018, pp. 585–595. DOI: 10.1007/978-98110-7986−3_60.

20. Arboleya P., Mayet C., Mohamed B., Aguado J. A., Torre S. A review of railway feeding infrastructures: Mathematical models for planning and operation. eTransportation. 2020, vol. 5. DOI: 10.1016/j.etran.2020.100063.

21. Demidenko I. S. Povyshenie effektivnosti zashchity tyagovoj seti postoyannogo toka [The Improving the Efficiency of DC Traction Network Protection] Автореф. PhD’s thesis, Novosibirsk, NSTU,2013. — 19 p. [In Russ].

22. Shilong C., Zihang Z., Hao L., Guihong B., Chao X., Pengsong L., Wenying Z. Traction Network Protection Based on Similarity of Transient Current Waveform. Frontiers in Energy Research. 2022, vol. 10. DOI: 10.3389/fenrg.2022.865602.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.