Representation of the generalized Mohr–Coulomb failure criterion of anisotropic rocks in the Haigh–Westergaard stress space

The study focuses on the influence of the intermediate principal stress on the value of limit stresses in rocks possessing anisotropic strength. Anisotropy develops in the course of the multi-century subsidence of rocks in the form of multi-stratified compactions. Such rocks mostly experience the triaxial nonuniform stress state and may occur at various lithospheric depths. The study used the linear Mohr–Coulomb criterion generalized for the case of variation in rock strength in different directions. Considering independence of limit stresses in this theory from the influence of the intermediate principal stress, the generalized criterion is written in the Haigh–Westergaard stress space. The calculations were performed for a specific type of an anisotropic rock, and its initial strength parameters were taken from the source literature. Using the obtained data, the graphs of the principal stress value as function of the angle of coring relative to the axis of a full-size core were plotted. Furthermore, the influence of the intermediate principal stress on the limit stress value was estimated. It follows from the calculation data that with the increase in the intermediate principal stresses by 10% and by 50%, the limit strength of rock, namely, the principal breaking stress grows by 3.97% and 15.41%, respectively.

Keywords: stratification, anisotropy, rocks, geomechanical model, intermediate principal stress, stress state, failure criterion, Mohr–Coulomb criterion.
For citation:

Aliev M. M., Sozontova E. A. Representation of the generalized Mohr–Coulomb failure criterion of anisotropic rocks in the Haigh–Westergaard stress space. MIAB. Mining Inf. Anal. Bull. 2025;(3):42-53. [In Russ]. DOI: 10.25018/0236_1493_2025_3_0_42.

Acknowledgements:
Issue number: 3
Year: 2025
Page number: 42-53
ISBN: 0236-1493
UDK: 622.240.8
DOI: 10.25018/0236_1493_2025_3_0_42
Article receipt date: 18.04.2023
Date of review receipt: 15.08.2024
Date of the editorial board′s decision on the article′s publishing: 10.02.2025
About authors:

M.M. Aliev1, Dr. Sci. (Eng.), Professor, Head of Chair, e-mail: mmaliev@rambler.ru,
E.A. Sozontova1, Senior Lecturer, e-mail: sozontovaea@agni-rt.ru,
1 Almetyevsk State Technological University «Petroleum Higher School», Almetyevsk, 423450, Republic of Tatarstan, Russia.

 

For contacts:

E.A. Sozontova, e-mail: sozontovaea@agni-rt.ru.

Bibliography:

1. Klimov D. M., Karev V. I., Kovalenko Yu. F. The role of stresses in the formation of operational properties of wells. Aktual'nye problemy mekhaniki. Mekhanika deformiruemogo tverdogo tela: sbornik nauchnykh statey [Actual problems of mechanics. Mechanics of a deformable solid body. Collection of scientific articles], Moscow, Nauka, 2009, pp. 470—476. [In Russ].

2. Karev V. I. Vliyanie napryazhenno-deformirovannogo sostoyaniya gornykh porod na fil'tratsionniy protsess i debit skvazhin [Influence of the stress-strain state of rocks on the filtration process and well flow rate], Doctor’s thesis, Saint-Petersburg, 2010, 34 p.

3. Karev V. I., Klimov D. M., Kovalenko Y. F., Ustinov K. B. Modelling of mechanical and filtration processes near the well with regard to anisotropy. Journal of Physics: Conference Series. 2018, vol. 991, no. 1, article 012039. DOI: 10.1088/1742-6596/991/1/012039.

4. Karev V. I., Klimov D. M., Kovalenko Y. F., Ustinov K. B. Fracture model of anisotropic rocks under complex loading. Physical Mesomechanics. 2018, vol. 21, no. 3, pp. 216—222.

5. Karev V. I., Kovalenko Yu. F., Ustinov K. B. Modeling of deformation and destruction of anisotropic rocks near horizontal wells. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2017, no. 3, pp. 12—21. [In Russ].

6. Verbilo P. E., Vilner M. A. Study of the jointed rock mass uniaxial compression strength anisotropy and scale effect. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 47—59. [In Russ]. DOI: 10.25 018/0236_1493_2022_62_0_47.

7. Jiayi Shen, Zheng Shu, Ming Cai, Shigui Du A shear strength model for anisotropic blocky rock masses with persistent joints. International Journal of Rock Mechanics and Mining Sciences. 2020, vol. 134, article 104430. DOI: 10.1016/j.ijrmms.2020.104430.

8. Songfeng Guo, Shengwen Qi, Bowen Zheng, Lei Xue, Xueliang Wang, Ning Liang, Yu Zou, Fengjiao Tang, Muhammad Faisal Waqar, Weiluan Wen, Li Yongchao, Xin Yu The confinement-affected strength variety of anisotropic rock mass. Materials. 2022, vol. 15, article 8444. DOI: 10.3390/ ma15238444.

9. Walsh J. B., Brace W. F. A fracture criterion for brittle anisotropic rocks. Journal of Geophysical Research. 1964, vol. 69, article 3449. DOI: 10.1029/JZ069i016p03449.

10. Wang Z., Qi C., Ban L., Yu H., Wang H., Fu Z. Modified Hoek–Brown failure criterion for anisotropic intact rock under high confining pressures. Bulletin of Engineering Geology and the Environment. 2022, vol. 81, article 333. DOI: 10.1007/s10064-022-02831-8.

11. Saroglou C., Qi S., Guo S., Wu F. ARMR, a new classification system for the rating of anisotropic rock masses. Bulletin of Engineering Geology and the Environment. 2019, vol. 78, pp. 3611—3626. DOI: 10.1007/s10064-018-1369-4.

12. Shi X., Yang X., Meng Y., Li G. Modified Hoek–Brown failure criterion for anisotropic rocks. Environmental Earth Sciences. 2016, vol. 75, article 995. DOI: 10.1007/s12665-016-5810-3.

13. Őzbek A., Gül M., Karakan E., Alka Ő. Anisotropy effect on strengths of metamorphic rocks. Journal of Rock Mechanics and Geotechnical Engineering. 2018, vol. 10, no. 1, pр. 164—175. DOI: 10.1016/j.jrmge.2017.09.006.

14. Verbilo P., Karasev M., Belyakov N., Iovlev G. Experimental and numerical research of jointed rock mass anisotropy in a three-dimensional stress field. Rudarsko Geolosko Naftni Zbornik. 2022, vol. 37, no. 2, pp. 109—122. DOI: 10.17794/rgn.2022.2.10.

15. Aliev M. M. Limit equilibrium of an anisotropic asymmetric loose wedge loaded with doublesided pressure. Structural mechanics and analysis of constructions. 1984, no. 4, pp. 27—29. [In Russ].

16. Aliev M. M., Geniev G. A. Calculation of the bearing capacity of anisotropic foundations of structures. News of higher educational institutions. Construction. 2001, no. 6, pp. 18—22. [In Russ].

17. Aliev M. M., Ismagilova Z. F., Burmistrova N. N. Geomechanical models of shear fracture of multi-layer rocks. MIAB. Mining Inf. Anal. Bull. 2020, no. 8, pp. 52—61. [In Russ]. DOI: 10.25018/ 0236-1493-2020-8-0-52-61.

18. Chanyshev A. I. On the plasticity of anisotropic media. Journal of Applied Mechanics and Technical Physics. 1984, no. 2, pp. 149—151. [In Russ].

19. Protosenya A. G., Verbilo P. E. Study of the compressive strength of a fractured rock mass. Journal of Mining Institute. 2017, vol. 223, pp. 51—57. [In Russ]. DOI: 10.18454/PMI.2017.1.51.

20. Ramamurthy T. Strength, modulus responses of anisotropic rocks. Compressive rock engineering, vol. 1. Pergamon Press, Oxford, 1993, pp. 313—329.

21. Ramamurthy T. Shear strength response of some geological materials in triaxial compression. International Journal of Rock Mechanics and Mining Sciences. 2001, vol. 38, no. 5, pp. 683—697.DOI: 10.1016/S1365-1609(01)00035-1.

22. Hoek E., Brown E. T. The Hoek–Brown failure criterion — a 1988 update. Proceedings of the 15th Canadian Rock Mechanics Symposium, Toronto, 1988, pp. 31—38.

23. Ambrose J. Failure of anisotropic shales under triaxial stress conditions. A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy and the Diploma of Imperial College, Imperial College London Department of Earth Science and Engineering, June 2014, 265 р.

24. Malinin N. N. Prikladnaya teoriya plastichnosti i polzuchesti: uchebnik dlya studentov vuzov. 2-e izd., pererab. i dop [Applied theory of plasticity and creep: a textbook for university students. 2nd ed., revised. and additional], Moscow, Mashinostroenie, 1975, 400 p.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.