Application of wireless network technologies in the construction of seismic exploration systems

Authors: Vyboldin Yu. K.

Seismic survey has a greater depth of penetration, allows images of underground structures with high resolution and can complement well drilling and exploration programs performed by other geophysical methods. Seismic methods have shown high efficiency in the exploration of solid minerals. Wireless systems of seismic exploration allow to simplify significantly the deployment and maintenance of the system especially when the number and density of data collection nodes increase in difficult terrain, allow to scale the system, reduce equipment weight, improve reliability, reduce cost and operating costs. The paper analyzes ways of building a seismic data acquisition and transmission system as one of the important components of a seismic exploration system. The task of building a large-scale wireless seismic acquisition system operating in real time remains unsolved due to the limited bandwidth of the wireless channel, transmission delays and high power consumption caused by data transfer conflicts in batterypowered acquisition devices. When building wireless seismic acquisition systems based on a single wireless technology, it is difficult to achieve high data rates and large area coverage simultaneously. Therefore, modern methods involve a two-tiered system structure. In this paper, we propose to use high-speed standards of Wi-Fi technology both at the lower level for building data collection subnetworks, and at the upper level for building a communication network with the central monitoring station. The article formulates the requirements to the construction of wireless seismic survey systems, considers a number of the most promising technological solutions, including LPWAN, Wi-Fi-LTE, UBW technologies, allowing the construction of largescale wireless networks with a large number of data collection nodes, operating in unlicensed frequency bands. Special attention during the analysis is paid to the issues of providing the required network capacity and its scaling, providing the required number of independent data collection channels, positioning of the data collection nodes with the help of satellite navigation systems and cooperative localization methods, time reference during data acquisition. The analysis of all technical solutions is connected with the reduction of power consumption of the network. Suggestions for improving the data collection procedure are formulated.

Keywords: seismic exploration, wireless technologies, data collection node, a central monitoring station, energy conservation, environmental access control, routing protocols, sensor networks.
For citation:

Vyboldin Yu. K. Application of wireless network technologies in the construction of seismic exploration systems. MIAB. Mining Inf. Anal. Bull. 2022;(6−2):283—304. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_283.

Acknowledgements:
Issue number: 6
Year: 2022
Page number: 283-304
ISBN: 0236-1493
UDK: 550.8.028, 550.812.1
DOI: 10.25018/0236_1493_2022_62_0_283
Article receipt date: 14.01.2022
Date of review receipt: 15.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Vyboldin Yu. K., Cand. Sci. (Eng.), Associate Professor, https://orcid.org/ 0000-0002-7813-9470, St. Petersburg Mining University, 199106, St. Petersburg, 21 V. O. line, 2, Russia, e-mail: Y.Vyboldin@mail.ru.

 

For contacts:

Vyboldin Yu. K., Y.Vyboldin@mail.ru.

Bibliography:

1. Litvinenko V. S. Digital economy as a factor in the technological development of the mineral sector. Natural Resources Research. 2020, vol. 29, no.3, pp. 1521–1541. DOI 10.1007/s11053-019-09568-4.

2. Trushko V. L., Protosenya A. G. Prospects for the development of geomechanics in a new technological order. Zapiski Gornogo instituta. 2019, vol. 236, pp.162–166. [In Russ]. DOI:10.31897/PMI.2019.2.162

3. Razumov E. E., Prostov S. M., Mulev S. N., Rukavishnikov G. D. Seismic information processing algorithms. MIAB. Mining Inf. Anal. Bull. 2022, no. 2, pp. 17–29. [In Russ]. DOI: 10.25018/0236_1493_2022_2_0_17.

4. Potapov A. I., Kondratyev A. V. Nondestructive control of multilayer media by the method of the velocity hodograph of elastic waves. Zapiski Gornogo instituta. 2020, vol. 243, pp.348–356. [In Russ]. DOI: 10.31897/PMI.2020.3.348.

5. Rasskazov M. I., Tereshkin A. A., Tsoi D. I., Konstantinov A. V., Sidlyar A. V. Evaluation of the geomechanical state of the mining massif according to seismoacoustic monitoring data at rockburst-prone deposits. MIAB. Mining Inf. Anal. Bull, 2021, no. 12−1. pp.167–182. [In Russ]. DOI: 10.25018/0236_1493_2021_121_0_167.

6. Boxberger T., Fleming K., Pittore M., Parolai S., Pilz M., Mikulla S. The multiparameter wireless sensing system (MPwise): Its description and application to earthquake risk mitigation. Sensors. 2017, vol. 17, 2400. DOI:10.3390/s17102400.

7. Cherepovsky A. V. Seismorazvedka s odinochnymi priemnikami I istchnikami : obzor sovremennych technologii I proektirovania syimok [Survey with single receivers and sources: review of modern technologies and survey design], Moscow, EAGE Geomodel, 2012. 133 p. [In Russ].

8. Manzi M., Cooper G., Malehmir A., Durrheim R., Nkosi Z. Integrated interpretation of 3D seismic data to enhance the detection of the gold-bearing reef: Mponeng Gold mine, Witwatersrand Basin (South Africa). Geophysical Prospecting. 2015, 63, pp. 881–902 doi: 10.1111/1365−2478.12273.

9. Malehmir A., Durrheim R., Bellefleur G., Urosevic M., Juhlin C., White D. J., Milkereit B. and Campbell G. Seismic methods in mineral exploration and mine planning: a general overview of past and present case histories and a look into the future. Geophysics. 2012, vol. 77(5), pp 173–190. DOI:10.1190/GEO2012−0028.1.

10. Dehghannejad M., Bauer T., Malehmir A., Juhlin C., Weihed P. Crustal geometry of the central Skellefte district, northern Swedenconstraints from reflection seismic investigations. Tectonophysics. 2012, vol. 524–525, pp. 87–99. DOI: 10.1016/j.tecto.2011.12.021.

11. Abdulvaliev M. T., Tissen A. P., Tolkachev V. M., Cherepovsky A. V. Improvement of informativeness and reliability of ground seismic survey with nodal cableless systems. Geologia nefty I gaza. 2020, no. 5, pp. 75–81. [In Russ]. DOI: 10.31087/0016-7894-20205-75−8.

12. Navrotsky A. O., Akkuratov O. S., Abdulvaliev M. T. Innovative seismic exploration. features of application of cable-free telemetric seismic data acquisition system based on the use of molecular-electronic seismic sensors. Geoinformatika. 2018, no. 3, pp. 59–67. [In Russ].

13. Mougenot D. Land cableless systems: Use and misuse. First Break. 2010, vol. 28, pp. 55–58.

14. Mousa W. A. Advanced digital signal processing of seismic data. Cambridge University Press, Cambridge, 2019, 324 p.

15. Sherstyukov O. N., Ryabchenko E. Yu., Gayazutdinov A. R., Martynchuk S. L. Application of wireless network technologies in seismic data acquisition systems. Georesurs. 2011, no. 6 (42), pp. 50–56. [In Russ].

16. Harris K., Bacon R. Utilizing source mechanism and microseismic event location to identify faults inreal-time using wireless seismic recording systems — An Eagle Ford case study. First Break. 2015, vol. 33, pp. 57–61.

17. Jamali-Rad H., Campman X. Internet of Things-based wireless networking for seismic applications European Association of Geoscientists & Engineers. Geophysical Prospecting. 2018, vol. 66 (4), pp.1–21. DOI: 10.1111/1365−2478.12617.

18. Makama A., Kuladinithi K., Timm-Giel A. Wireless Geophone Networks for Land Seismic Data Acquisition: A Survey, Tutorial and Performance Evaluation. MDPI Sensors. 2021, vol. 21, pp. 2–22. DOI.org/10.3390/s21155171.

19. Haxhibeqiri А. J., De Poorter E., Moerman I., Hoebeke J. A survey of LoRaWAN for IoT: From technology to application. Sensor. 2018, vol. 18, no. 11, pp. 1–38. DOI:10.3390/ S18113995.

20. Lee H. C., Ke K. H. Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh Network System: Design and Evaluation. IEEE Transactions on Instrumentation and Measurement. 2018, vol. 67, pp. 2177–2187. DOI: 10.1109/TIM.2018.2814082.

21. Yang H., Wang F., Tong X., Lv H., Han Z. An Efficient Equal Air-Time Transmission Strategy for Wireless Seismometer Array Based on LoRaWAN With CuckooHash. IEEE Access. 2020, vol. 28 (8), pp. 201713–201727. DOI: 10.1109/ACCESS.2020.3034332.

22. Borisov S. V., Vyboldin Y. K. The methodology of choosing the distribution model of echoes for ground penetrating radar with broadband signals. Journal of Physics: Conference Series. 2021, vol. 1753(1), 012012. DOI: 10.1088/1742−6596/1753/1/012012.

23. Jornet-Monteverde J. A., Galiana-Merino J. J., Soler-Llorens J. L. Design and Implementation of a Wireless Sensor Network for Seismic Monitoring of Buildings. MDPI Sensors. 2021, vol. 21, 3875. DOI.org/10.3390/s21113875.

24. Beffa M., Crice D., Kligfield R. Very high speed ordered mesh network of seismic sensors for oil and gasexploration. Proceedings of the IEEE International Conference on Mobile Adhoc and Sensor Systems, Pisa, Italy, 2007, pp. 1–5.

25. Akyildiz I. F., Su W., Sankarasubramaniam Y., Cayirci E. Wireless sensor networks: a survey. Computer Networks. 2002, vol. 38, pp. 393–422.

26. Reddy V. A., Stuber G. L., Al-Dharrab S., Mesbah W., Muqaibel A. H. A Wireless Geophone Network Architecture using IEEE802.11af with Power Saving Schemes. IEEE Transactions on Wireless Communications. 2019, vol. 18, pp. 5967–5982. DOI: 10.1109/ TWC.2019.2940944.

27. Tian R., Wang L., Zhou X., Xu H., Lin J., Zhang L. An integrated energy-efficient wireless sensor node for the microtremor survey method. Sensors. 2019, vol. 19, 544. DOI:10.3390/s19030544.

28. Yin Z., Zhou Y., Li Y. Seismic Exploration Wireless Sensor System Based on Wi-Fi and LTE. MDPI Sensors. 2020, vol. 20, 1018. DOI:10.3390/s20041018.

29. Savazzi S., Spagnolini U., Goratti L., Molteni D., Latva-aho M., Nicoli M. Ultrawide band sensor networks in oil and gas explorations. IEEE Communications Magazine. 2013, vol. 51, pp. 150–160.

30. Batra A., Balakrishnan J., Aiello G. R., Foerster J. R., Dabak A. Design of a Multiband OFDM System for Realistic UWB Channel Environments. IEEE Transactions on Microwave Theory and Techniques. 2004, vol. 52, no. 9, pp. 2123–2137.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.