Applications of the artificially supported stoping method with cemented rockfill in mining

The article gives an applications of the artificially supported stoping method with cemented rockfill. Cemented rockfill is mainly used in mining thin, steeply dipping ore bodies. A study of cemented rockfill application has shown, that the average strength of fill mass ranges from 2 to 5 MPa; the size of coarse aggregate plays an important role and it is recommended to use sizes within the range from 70 to 100 mm; the most common binder is Portland cement; mine and groundwater are suitable for mixing provided that 4 ≥ (pH) ≥ 12.5, sulphate content does not exceed 2.7 g/l, and that of other solids is less than — 0.3 g/l maximum. The article gives recommendations for further research in the field of cemented rockfill, application in particular: the determination of its strength properties at coarse aggregate sizes from 150 to 200 mm; determination of design parameters of the mining system; numerical modelling of stress-strain changes in rock mass during mining, development of recommendations on the use of the cemented rockfill based on the results of pilot tests. In order to reduce the cost of mining with cemented rockfill, the following order of operations is recommended: first, cemented rockfill pillars are formed, then the stope reserves are worked out, and then the stope is filled with rockfill.

Keywords: ore deposits, thin ore bodies, steep ore bodies, room-and-pillar method, cemented rockfill, rockfill, rib pillar, unconfined compressive strength of cemented rockfill.
For citation:

Zileev А. G., Vasiliev D. А., Тulin P. К., Nguyen Т. Т., Кomolov V. V. Applications of the artificially supported stoping method with cemented rockfill in mining. MIAB. Mining Inf. Anal. Bull. 2022;(6—1):21—34. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_21.

Acknowledgements:

The study was funded through a government research grant for 2021 (№FSRW-2020-0014).

Issue number: 6
Year: 2022
Page number: 21-34
ISBN: 0236-1493
UDK: 622.274.4
DOI: 10.25018/0236_1493_2022_61_0_21
Article receipt date: 14.01.2022
Date of review receipt: 30.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Zileev А. G.1, Cand. Sci. (Eng.), Associate Professor, ORCID ID: 0000-0001-9586-8379, e-mail: zileev_ag@pers.spmi.ru;
Vasiliev D. А.1, Leading Engineer, e-mail: Vasilev_DA4@pers.spmi.ru;
Тulin P. К.1, Cand. Sci. (Eng.), Associate Professor, ORCID ID: 0000-0002-0820-4759, e-mail: Tulin_PK@pers.spmi.ru;
Nguyen Tai Tien1, postgraduate student, ORCID ID: 0000-0002-5246-9252, e-mail: s185101@stud.spmi.ru;
Кomolov V. V.1, postgraduate student, e-mail:s185077@stud.spmi.ru;
1 St. Petersburg Mining University, 199106, St. Petersburg, 21st line, 2, Russia.

 

For contacts:

Alexander Gennadievich Zileev, e-mail: zileev_ag@pers.spmi.ru

Bibliography:

1. Fall M., Célestin J. C., Pokharel M., Touré M. A. Contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill. Engineering Geology. 2010, vol. 114, no. 3, pp. 397–413. DOI: 10.1016/j. enggeo.2010.05.016.

2. Li L. Generalized solution for mining backfill design. International Journal of Geomechanics. 2014, vol. 14, no 3. pp. 613—624. DOI: 10.1061/(ASCE)GM.1943—5622.0000329.

3. Nasir O., Fall M. Modeling the heat development in hydrating CPB structures. Computers and Geotechnics. 2009, vol. 36, no. 7, pp. 1207–1218. DOI: 10.1016/j. compgeo.2009.05.008.

4. Zhu W. B., Xu J. M., Xu J. L., Chen D. Y., Shi J. X. Pier-column backfill mining technology for controlling surface subsidence. International Journal of Rock Mechanics and Mining Sciences. 2017, vol. 96, pp. 58–65. DOI:10.1016/j.ijrmms.2017.04.014.

5. Zhang J. X., Li B. Y., Zhou N., Zhang Q. Application of solid backfilling to reduce hardroof caving and longwall coal face burst potential. International Journal of Rock Mechanics and Mining Sciences. 2016, vol. 88, pp. 197–205. DOI: 10.1016/j.ijrmms.2016.07.025.

6. Zhou N., Li M., Zhang J. X., Gao R. Roadway backfill method to prevent geohazards induced by room and pillar mining: a case study in Changxing coal mine. Natural Hazards and Earth System Sciences. 2016, vol.16, no.12, pp. 2473–2484. DOI:10.5194/nhess-16— 2473—2016.

7. Benzaazoua M., Bussiere B., Demers I., Aubertin M., Fried E., Blier A. Integrated mine tailings management by combining environmental desulphurization and cemented paste backfll: application to mine Doyon, Quebec, Canada. Minerals Engineering. 2008, vol. 21, no. 4, pp. 330–340. DOI: 10.1016/j.mineng.2007.11.012.

8. Kesimal A., Yilmaz E., Ercikdi B., Alp I., Deveci H. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill. Materials Letters. 2005, vol. 59, no. 28, pp. 3703–3709. DOI:10.1016/j.matlet.2005.06.042.

9. Jiang H., Fall M., Li Y., Han J. An experimental study on compressive behaviour of cemented rockfill. Construction and Building Materials. 2019, vol. 213, pp. 10–19. DOI: 10.1016/j.ultras.2018.09.008.

10. Wu J., Feng M., Chen Z., Mao X., Han G., Wang Y. Particle Size Distribution Effects on the Strength Characteristic of Cemented Paste Backfill. Minerals. 2018, vol.8, no. 8 (322), pp. 1–21. DOI: 10.3390/min8080322.

11. Wu J., Feng M., Ni X., Mao X., Chen Z., Han G. Aggregate gradation effects on dilatancy behavior and acoustic characteristic of cemented rockfill. Ultrasonics. 2019, vol. 92, pp. 79–92. DOI: 10.1016/j.ultras.2018.09.008.

12. Smirnova O. M. Low-Clinker Cements with Low Water Demand. Journal of Materials in Civil Engineering. 2020, vol. 32, iss. 7, 0602000. DOI: 10.1061/(ASCE) MT.1943—5533.0003241.

13. Smirnova O. M., Potyomkin D. A. Influence of ground granulated blast furnace slag properties on the superplasticizers effect. International Journal of Civil Engineering and Technology. 2018, vol. 9, no. 7, pp. 874–880.

14. Li M., Zhang J., Liu Z., Zhao X., Huang P. Mechanical analysis of roof stability under nonlinear compaction of solid backfill body. International Journal of Mining Science and Technology. 2016, vol. 26, pp. 863–868. DOI: 10.1016/j.ijmst.2016.05.029.

15. Mo S., Canbulat I., Zhang C., Oh J., Shen B., Hagan P. Numerical investigation into the effect of backfilling on coal pillar strength in highwall mining. International Journal of Mining Science and Technology. 2018, vol. 28, pp. 281–286. DOI: 10.1016/j. ijmst.2017.07.003.

16. Zhang J., Zhang Q., Huang Y., Liu J., Zhou N., Zan D. Strata movement controlling effect of waste and fly ash backfillings in fully mechanized coal mining with backfilling face. Mining Science and Technology. 2011, vol. 21, pp. 721–726. DOI: 10.1016/j. mstc.2011.03.003.

17. Koval’skij E. R., Gromcev K. V., Petrov D. N. Modeling deformation of rib pillars during backfill. MIAB. Mining Inf. Anal. Bull. 2020, no. 9, pp. 87–101. [In Russ]. DOI: 10.25018/0236-1493-2020-9-0—87—101.

18. Ovcharenko O. V., Ajbinder I. I., Packevich P. G. Rockburst hazard at the Moroshka deposit under mining with backfill. MIAB. Mining Inf. Anal. Bull. 2018, no. 8, pp. 5–15. [In Russ]. DOI: 10.25018/0236-1493-2018-8-0—5-15.

19. Hajrutdinov A. M., Kongar-Sjurjun Ch. B., Kowalik T., Tjuljaeva Ju. S. Stress–strain behavior control in rock mass using different-strength backfill. MIAB. Mining Inf. Anal. Bull. 2020;(10):42—55. [In Russ]. DOI: 10.25018/0236-1493-2020-10—0-42—55.

20. Trushko V. L., Gospodarikov A. P., Sozonov K. V. Calculation of stress state in ore and backfill during mining in Yakovlevskoe iron ore deposit. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp.111–123. [In Russ]. DOI: 10.25018/0236-1493-2019-05—0-111—123.

21. Lingga B. A., Derek Apel D., Sepehri M., Pu Y. Assessment of digital image correlation method in determining large scale cemented rockfill strains. International Journal of Mining Science and Technology. 2018, vol. 29, no. 5, pp. 771–776. DOI: 10.1016/j. ijmst.2018.12.002.

22. Salvoldi B. G., Van Der Spuy B, Wilson S. Optimisation of cemented aggregate backfill at New Luika Gold Mine. Paste 2019: Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings. Cape Town, South Africa, 2019, pp. 437–450. DOI: 10.36487/ACG_rep/1910_32_Salvoldi.

23. Pagé P., Li L., Pengyu Yang P., Simon R. Numerical investigation of the stability of a base-exposed sill mat made of cemented backfill. International Journal of Rock Mechanics and Mining Sciences. 2019, vol. 114, pp. 195–207. DOI: 10.1016/j.ijrmms.2018.10.008.

24. Saw H., Prentice S., Villaescusa E. Characterisation of cemented rock fill materials for the Cosmos nickel mine, Western Australia. International Conference on Advances in Construction Materials through Science and Engineering. Hong Kong, China, 2011. pp. 1–8. Available at: https://rockmechanics.curtin.edu.au/wp-content/uploads/sites/15/2016/11/ Characterisation-of-cemented-rock-fill-materials-for-the-Cosmos-nickel-mine-WA-2011-. pdf.

25. Sainsbury D. P., Sainsbury B. L. Design and implementation of cemented rockfill at the Ballarat Gold Project. Conference: Minefill 2014. Perth, Australia, 2014, pp. 205–216. DOI: 10.36487/ACG_rep/1404_15_Sainsbury.

26. Stone D., G. M. R. The Optimization of Mix Designs for Cemented Rockfill. Minefill 1993. SAIMM, Johannesburg, South Africa, 1993, pp. 249–253.

27. Stone D. Factors that affect cemented rockfill quality in Nevada mines. Minefill 2007. The 9th International Symposium on Mining with Backfill. Montreal, Canada, 2007, pp. 1–6.

28. Yu T. R., Counter D. B. Backfill practice and technology at Kidd Creek Mines. Canadian Mining and Metallurgical Bulletin.1983, vol.76, no. 856, pp. 56–65.

29. Kuranov A. D. Application of numerical modeling for design of safety paramters of safety mining method in highly stressed masses. Journal of Mining Institute. 2014. vol. 206. pp. 60–64. [In Russ].

30 Innovative directions in the design of mining enterprises: geomechanical support for the design and maintenance of mining operations (St. Petersburg, May 15—17, 2017) / scientific editors: A. N. Shabarov, K. V. Morozov. St. Petersburg: SPGU, 2017, 486 p. [In Russ].

31. Shhukin S. A., Neverov A. A., Neverov S. A., Shaposhnik Ju.N., Nikol’skij A. M. Extraction of open pit bottom reserves by room-and-pillar method using hybrid backfill. Journal of Mining Sciences. 2020, no. 4, pp. 205–215. [In Russ]. DOI: 10.33764/2618— 981X-2021—2-4—205—215.

32. Kuzmenko O. M., Petl’ovanij M. V., Usatij V. Ju. Hardening backfill during mining of steep ore deposits in complex mining and geological conditions. RVV-2015, 138 p. Available at: http://ir.nmu.org.ua/handle/123456789/146610 [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.