CFD-modeling in design and research of pneumatic and hydraulic percussion tools

Authors: Rechkin A A

The article presents a brief critical analysis of methods currently in use in design and research of pneumatic and hydraulic percussion tools for mining and construction. These me thods are somewhat limited in reliability of modeling data produced. The computational fluid dynamics (CFD) method is described in short. The application of CFD methods in design and research of pneumatic and hydraulic percussion tools is justified as these techniques offer the fullest and most accurate description of the processes running in these devices. The case-study of a 2D nonstationary simulation of piston travel in a pneumatic percussion tool in the environment Ansys Fluent demonstrates advantages of this method in acquisition of information about physical processes which take place when the impact piston moves in the machine in comparison with physical and one-dimensional modeling. The obtained stationary solution of the problem is an initial solution for the nonstationary formulation. The time and space distributions of physical parameters, the displacement diagrams and the velocity curves of the impact piston are obtained. The patterns of pressure, density, velocity vectors, temperature, Reynolds number and Mach number at a certain time are presented.

Keywords: Computational Fluid Dynamics, CFD, percussion machines, design, simulation model, dynamic grids, grid model, elastic valve, nonstationary processes.
For citation:

Rechkin A. A. CFD-modeling in design and research of pneumatic and hydraulic percussion tools. MIAB. Mining Inf. Anal. Bull. 2022;(7):104-114. [In Russ]. DOI: 10.25018/0236_1493_2022_7_0_104.

Acknowledgements:
Issue number: 7
Year: 2022
Page number: 104-114
ISBN: 0236-1493
UDK: 622.23.05
DOI: 10.25018/0236_1493_2022_7_0_104
Article receipt date: 02.03.2022
Date of review receipt: 11.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.06.2022
About authors:

A.A. Rechkin, Graduate Student, Chinakal Institute of Mining of Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia, e-mail: lexxer68@gmail.com, ORCID ID: 0000-0002-0102-3824.

 

For contacts:
Bibliography:

1. Sysoev N. I., Grinko A. A., Grinko D. A. Justification of structure and rational design for hammer drills for helical milling. MIAB. Mining Inf. Anal. Bull. 2021, no. 7, pp. 113—124. [In Russ]. DOI: 10.25018/ 0236_1493_2021_7_0_113.

2. Danilov B. B., Smolyanitsky B. N., Chanyshev A. I., Cheshchin D. O. Finding forces required to change air hammer path in soil. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2017, no. 4 — С. 69—79. [In Russ]. DOI: 10.1134/ S1062739117042667.

3. Tishchenko I. V., Chervov V. V. Principles of designing air-driven hammer with decoupled piston for driving rods in soil. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2018, no. 6, pp. 75—86. [In Russ]. DOI: 10.15372/FTPRPI20180608.

4. Yungmeyster D. A., Brichkin V. N., Isaev A. I. Design and process parameters of an air hammer for oversize reduction. Obogashchenie Rud. 2019, no. 2, pp. 3—7. [In Russ]. DOI: 10.17580/or.2019.02.01.

5. Liu R., Yao C., Zhou X., Wang H., Ba Y., Sun Z. Dynamic frequency response model for gas turbine considering air hammer effect. Asia Energy and Electrical Engineering Symposium (AEEES). 2020, pp.247—252. DOI: 10.1109/AEEES48850.2020.9121550.

6. Gorodilov L. V., Pershin A. I. Simulation model of a hydro-impact system with two limiters of striker movement. IOP Conference Series. Earth and Environmental Science. 2022, vol. 991, no. 1, article 012037. DOI: 10.1088/1755-1315/991/1/012037.

7. Redelin R. A., Kamanin Y. N., Panichkin A. V. Designing hydraulic impact devices for low-temperature operation. Journal of Physics. Conference Series. 2021, vol. 2096, no. 1, article 012005. DOI: 10.1088/1742-6596/2096/1/012005.

8. Galdin N. S., Semenova I. A., Galdin V. N. Analysis of the striker stroke impact on the hydropneumatic impact devices energy performance. Journal of Physics. Conference Series. 2019, vol. 1260, no. 11, article 112010. DOI: 10.1088/1742-6596/1260/11/112010.

9. Slidenko A. M., Slidenko V. M. Numerical research method of an impact device model. Journal of Physics. Conference Series. 2019, vol. 1203, no. 1, article 012086. DOI: 10.1088/17426596/1203/1/012086.

10. Slidenko A. M., Slidenko V. M. The research of discrete and continuous models of impact devices by numerical methods. Journal of Physics. Conference Series. 2021, vol. 1902, no. 1, article 012024. DOI: 10.1088/1742-6596/1902/1/012024.

11. Slidenko A. M., Slidenko V. M., Valyukhov S. G. Discrete-continuous three-element model of impact device. Journal of Physics. Conference Series. 2021, vol. 2131, no. 3, article 032091. DOI: 10.1088/1742-6596/2131/3/032091.

12. Bolobov V. I., Plashchinsky V. A. Influence of impact duration on fracture efficiency in rocks and on plastic deformation of metals. MIAB. Mining Inf. Anal. Bull. 2022, no. 3, pp. 78— 96. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_78.

13. Yungmeister D. A., Isaev A. I., Yacheikin A. I., Soboleva P. D. Field study of DTH hammer operation with rock drilling machines. MIAB. Mining Inf. Anal. Bull. 2021, no. 3, pp. 28— 36. [In Russ]. DOI: 10.25018/0236-1493-2021-3-0-28-36.

14. Gorodilov L. V., Efimov V. P., Sazhin P. V., Kudryavtsev V. G., Pershin A. I. Method of studying the movement of the impact device case in the well taking into account the reaction of the rock massif. IOP Conference Series. Earth and Environmental Science. 2022, vol. 991, no. 1, article 012048. DOI: 10.1088/1755-1315/991/ 1/012048.

15. Tambovtsev P. N. Experimental studies of pneumatic impact device with a reduced specific consumption air. IOP Conference Series. Earth and Environmental Science. 2022, vol. 991, no. 1, article 012032. DOI: 10.1088/1755-1315/991/1/ 012032.

16. Vanag Y. V. Experimental study of pneumatic impact mechanism with three pneumatic chambers. IOP Conference Series. Earth and Environmental Science. 2022, vol. 991, no. 1, article 012017. DOI: 10.1088/1755-1315/991/1/012017.

17. Danilov B. B., Rechkin A. А., Smolianitskiy B. N. Investigation of the dynamics of pneumatic elastic valve mechanism when operating with the exhaust back pressure . Interexpo GEOSiberia. 2018, vol. 6, pp. 3—11. [In Russ]. DOI: 10.18303/2618-981X-2018-6-3-11.

18. Danilov B. B., Rechkin A. А. Substantiation of the principle scheme and the determination of energetic and constructive parameters of the volumetric hydrohammer for driving of wells in the ground by the method of vibroimpact pressing. Fundamental'nye i prikladnye voprosy gornykh nauk. 2018, vol. 5, no. 2, pp. 234—237. [In Russ].

19. Plokhikh V. V., Danilov B. B., Cheshchin D. O. Dynamics and operating cycles of vibratory-percussive systems involved in implementation of adaptive technologies. Interexpo GEOSiberia. 2021, vol. 2, no. 4, pp. 67—77. [In Russ]. DOI: 10.33764/2618-98IX-2021-2-4-67-77.

20. Danilov B. B., Rechkin A. А. Applicability evaluation and shape optimization of the elastic valve stationarily installed in pneumatic impact machines. Interexpo GEO-Siberia. 2021, vol. 2, no. 3, pp. 189—194. [In Russ]. DOI: 10.33764/2618-981X-2021-2-3-189-194.

21. Thang V. T., Duc T. M., Dat N. T., Trung N. T. Tung V. T. Simulation in design air spindle with orifice and distribution grooves. International Journal of Modern Physics. 2020, vol. 34, nos. 22—24, article 20401323. DOI: 10.1142/ S0217979220401323.

22. Autio E. Dynamic overset CFD simulation of a pneumatic impact device. Master of Science Thesis. Tampere University of Technology, 2018. 55 p.

23. Nilsson T. 2-way FSI simulations on a shock absorber check valve. KTH Royal Institute of Technology. Stockholm, 2015. 68 p.

24. Zhang X., Luo Y., Fan L., Peng J., Yin K. Investigation of RC-DTH air hammer performance using CFD approach with dynamic mesh method. Journal of Advanced Research. 2019, vol. 18, pp. 127—135. DOI: 10.1016/j.jare.2019.02.001.

25. Zhang X., Luo Y., Gan X., Yin K. Design and numerical analysis of a large-diameter air reverse circulation drill bit for reverse circulation down-the-hole air hammer drilling. Energy Science and Engineering. 2019, vol. 7, no. 3, pp. 921—929. DOI: 10.1002/ese3.321.

26. White F. M. Fluid mechanics. New York: McGraw-Hill Education, 2016. 864 p.

27. Blazek J. Computational fluid dynamics: principles and applications. Elsevier Science, 2005. 496 p.

28. Sutherland W. The viscosity of gases and molecular force. Philosophical Magazine. 1993, S. 5, no. 36, pp. 507—531.

29. Chou P. Y. On velocity correlations and the solutions of the equations of turbulent fluctuations. Quarterly of Applied Mathematics. 1945, no. 3, pp. 38—54.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.