Spectrum survey data application in ecological monitoring of aquatic vegetation

Mining activities result in damages and transformations both at the ground surface and in the subsoil. Open-pit and underground mining is accompanied by the formation of solid, liquid and gaseous waste. The ingress of pollutants into surface water bodies, their dispersion in the atmosphere and migration in soil causes initiation or aggravation of the environmental problems in certain areas. Therefore, it becomes necessary to decide on the environmental protection measures to minimize the negative impact of the mining industry. In recent years, much attention has been paid to the use of digital technologies to solve various problems. One of the promising areas of digital technology application is the mining and processing industry. The rapidly developing digital technologies are used in exploration of minerals, determination of atmospheric gas pollution and in territory mapping. Pollution of mining wastewater with nitrogen compounds is an environmental problem which causes eutrophication and deterioration of the organoleptic properties of water bodies. The use of certain vegetation species in water treatment can increase efficiency of removal of nitrogen compounds from water. In order to maintain high treatment efficiency, it is necessary to monitor vegetations. Spectral imaging with hyperspectral or multispectral cameras allows handling this problem. The obtained spectra, if correctly interpreted, provide the basis for calculating the vegetation indexes. These indexes are used to construct raster images that show the concentration of nitrogen in plant biomass, the projected cover and the vegetation structure. Spectral photography is possible thanks to the use of unmanned aerial vehicles (UAVs). The mobility of these devices enables real-time survey of vegetation and timely adjustment of operating conditions.

Keywords: spectrum survey, hyperspectral camera, multispectral camera, unmanned aerial vehicle, digital technologies, subsurface management digitalization, vegetation indexes, nitrogen compounds, wastewater pollution, biological treatment.
For citation:

Korotaeva A. E., Pashkevich M. A. Spectrum survey data application in ecological monitoring of aquatic vegetation. MIAB. Mining Inf. Anal. Bull. 2021;(5—2):231—244. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_231.

Acknowledgements:
Issue number: 5
Year: 2021
Page number: 231-244
ISBN: 0236-1493
UDK: 502/504
DOI: 10.25018/0236_1493_2021_52_0_231
Article receipt date: 27.01.2021
Date of review receipt: 29.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Korotaeva A. E.1, postgraduate student, s205056@stud.spmi.ru;
Pashkevich M. A., Dr. Sci. (Eng.), Professor;
Saint-Petersburg Mining University, Saint-Petersburg, Russia.

 

For contacts:
Bibliography:

1. Panfilov E. I. Assessment of impacts on subsoil and consequences in the development of mineral deposits. Gornaja promyshlennost’. 2009, Vol. 2, no. 78, pp. 26—32. [In Russ].

2. Chukaeva M. A., Matveeva V. A. The present-day hydrochemical state of hydroecosystems suffering the technogenic effect of AO apatit. Water Resourses. 2018. Vol. 45. no. 6. Pp. 935 940. DOI: 10.1134/s0097807818060040.

3. Nevskaya M. A., Fedoseev S. V., Marinina O. A. The analysis of the problems of mining waste products in the mineral resources sector of the Russian Federation. International Journal of Applied Engineering Research. 2016. Vol. 11. no. 16. pp. 9018—9025.

4. Mel’nikov N. N. Information technologies in ecological strategy of mining development. MIAB. Mining Inf. Anal. Bull. 2017, no. 10, pp. 7—10. DOI: 25018/0236— 1493—2017—10—23—7-18.

5. Sibirskaja neft’ [Siberian oil] : jelektron. zhurn. 2017, no. 147, available at: https:. www.gazprom-neft.ru/press-center/sibneft-online/ (accessed 20.12.2020). [In Russ].

6. Razmanova S. V., Andruhova O. V. Oilfield service companies as part of economy digitalization:assessment of the prospects for innovative development. Zapiski Gornogo instituta. 2020, Vol. 244, pp. 482—492. DOI: 10.31897/PMI.2020.4.11. [In Russ].

7. Malyshkov G. B., Sinkov L. S., Nikolaichuk L. A. Analysis of economic evaluation methods of environmental damage at calculation of production efficiency in mining industry. International Journal of Applied Engineering Research. 2017. Vol. 12. no. 10. pp. 2551— 2554.

8. Forsyth B., Cameron A., Miller S. Explosives and water quality. Proceedings of Sudbury‘95 Mining and the Environment. 28 May-1 June 1995. Montreal, Quebec, Canada, MEND, 1995. pp. 795—803.

9. Petrov D. S. Kuznecov V. S., Suprun I. K., Zhuravkova, M. A., Solnyshkova M. A. Phytoremediation efficiency of duckweed communities for mining enterprises wastewater treatment from nitrogen compounds. Journal of Physics: Conference Series. 2019. Vol. 1399. Article 055044.

10. Aleinikov N. N., Vershinin N. N., Shvedov K. K. Проблемы мониторинга экологической безопасности окружающей среды в местах проведения взрывных работ. Zapiski Gornogo instituta. 2001, Vol. 148, no. 2. pp. 3 5. [In Russ].

11. Jia H., Yuan Q. Removal of nitrogen from wastewater using microalgae and microalgae-bacteria consortia. Cogent environmental science. 2016. Vol. 2, no. 1. Article 1275089. DOI: 10.1080/23311843.2016.1275089.

12. Gavrilenko A. V., Stepachjova A. A., Molchanov V. P., Sul’man M. G. Complex denitrification of waste water. Bjulleten’ nauki i praktiki. 2016, Vol. 10, pp. 42—46. [In Russ].

13. Ahmadiev A. K., Jekzar’jan V. N. Rehabilitation of the natural environment as the structural element of ecological security. MIAB. Mining Inf. Anal. Bul. 2020, no. 2, pp. 112— 120. DOI: 10.25018/0236—1493—2020—2-0—112—120. [In Russ].

14. Rajan R. J., Sudarsan J. S., Nithiyanantham S. Microbial population dynamics in constructed wetlands: Review of recent advancements for wastewater treatment. Environmental Engineering Research. 2019. no. 24 (2). pp. 181—190. DOI: 10.4491/ EER.2018.127.

15. Ivanova L. A., Mjazin V. A., Kornejkova M. V., Fokina N. V., Red’kina V. V., Evdokimova G. A. Ways of increasing the efficiency of purpose wastewater treatment from mineral nitrogen compounds in the kola north conditions. Trudy Fersmanovskoj nauchnoj sessii GI KNC RAN. 2018, no. 15, pp. 456—459. DOI: https:. doi.org/10.31241/ FNS.2018.15.116. [In Russ].

16. Sivkova E. E., Semjonov  S.  Ju.  Using  «constructed  wetlands»  technology for wastewater treatment in small communities and enterprises. Izvestnie Tomskogo gosudarstvennogo universiteta. Biologija. 2013, Vol. 4, no. 12, pp. 123—130. [In Russ].

17. Jenssen P. D., Maehlum T., Krogstad T. Potential use of constructed wetlands for wastewater treatment in northern environments. Water Science and Technology. 1993. Vol. 28. no. 10. pp. 149—157. DOI: 10.2166/wst.1993.0223.

18. Varma M. Gupta A., Ghosal P., Majumder A. A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature. Science Total Environmental. 2021. Vol. 755. Article 142540. DOI: 10.1016/j.scitotenv.2020.142540.

19. Ji B., Zhao Y., Vymazal J., Qiao S. Wei T., Li J.,  Mander  Ü.  Can  subsurface flow constructed wetlands  be  applied  in  cold  climate  regions?  A  review  of  the current knowledge. Ecological Engineering. 2020. Vol. 157. Article. 105992. DOI: 10.1080/23311843.2016.1275089.

20. Vymazal J. Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering. 2013. Vol. 61. DOI: 10.1016/j.ecoleng.2013.06.023.

21. Cherepanov A. S., Druzhinina E. G. Spectral properties of vegetation and vegetation indexes. Geomatika. 2009, no. 3, pp. 28—32. [In Russ].

22. Sereda I. I., Tutubalina O. V. Ispol’zovanie vegetacionnyh indeksov dlja ocenki sostojanija posevov kukuruzy na osnove vozdushnyh giperspektral’nyh snimkov [Use of vegetation indices for assessing the state of maize crops on the basis of aerial hyperspectral imagery], Nauchnye issledovanija molodyh uchenyh-kartografov, vypolnennye pod rukovodstvom sotrudnikov kafedry kartografii i geoinformatiki fakul’teta MGU imeni M. V. Lomonosova: sb. nauch. st. Moscow, Dom KDU Publ., 2017, pp. 61—69. [In Russ].

23. Adamovich T. A. Kantor G. Ja., Ashihmina T. Ja., Savinyh V. P. The analysis of seasonal and long-term dynamics of the vegetative NDVI index in the territory of the State Nature Reserve «Nurgush». Teoreticheskaja i prikladnaja jekologija. 2018, no. 1, pp. 18—24. [In Russ].

24. Ferwerda J. G., Skidmore A. K., Mutanga O. Nitrogen detection with hyperspectral normalized ratio indices across multiple plant species. International Journal of Remote Sensing. 2005. Vol. 26. no. 18. pp. 4083—4095. DOI: 10.1080/01431160500181044.

25. Jakushev V. P., Blohina S. Ju. Current problems and prospects for the use of remote sensing of the Earth in agriculture. Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2018, Vol. 15, no. 5, pp. 253 256. DOI: 10.21046/2070—7401—2018— 15—5-257—262. [In Russ].

26. Al’t V. V., Gurova T. A., Elkin O. V., Klimenko D. N., Maksimov L. V., Pestunov I. A., Dubrovskaja O. A., Genaev M. A., Jerst T. V., Genaev K. A., Komyshev E. G., Hlestkin V. K., Afonnikov D. A. the use of specim iQ, a hyperspectral camera, for plant analysis. Vavilovskij zhurnal genetiki i selekcii. 2020, Vol. 24, no. 3, pp. 259—266. DOI: 10.18699/ VJ19.587. [In Russ].

27. Adão T. Hruška J., Pádua L., Bessa J., Peres E., Morais R., Sousa J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing. 2017. Vol. 9. no. 11. Article 1110. DOI: 10.3390/rs9111110.

28. Islam M. R., Garcia S. C., Henry D. Use of normalised difference vegetation index, nitrogen concentration, and total nitrogen content of whole maize plant and plant fractions to estimate yield and nutritive value of hybrid forage maize. Crop and Pasture Science. 2011. Vol. 62. pp. 374—382. DOI: 10.1071/CP10244.

29. Kostrzewski M., Waller P., Guertin P., Haberland J., Colaizzi P., Barnes E., Thompson T., Clarke T., Riley E., Choi C. Ground–Baswd Remote Sensing of Water and Nitrogen Stress. Transactions of the American Society  of Agriculure  Engineering.  2002. Vol.  4. pp. 29—38.

30. Ivanovskaja V. V., Golubeva E. I. Primenenie dannyh distancionnogo zondirovanija dlja reshenija zadach sel’skogo hozjajstva [Application of distance sensing data  for solving agricultural problems]. Sovremennye napravlenija razvitija fizicheskoj geografii: nauchnye i obrazovatel’nye aspekty ustojchivogo razvitija: sb. nauch. st. Minsk: Belorusskij gosudarstvennyj universitet Publ., 2019, pp. 96—99. [In Russ].

31. Ivanovskaja V. V., Golubeva E. I. Mapping land resources based on  remote sensing data. Geoinformacionnye tehnologii i kosmicheskij monitoring. 2019, Vol. 2, no. 4, pp. 74—79. DOI: 10.23885/2500—123x-2019—2-4—74—79. [In Russ].

32. Danilov A. S. Razrabotka distancionnyh metodov ocenki i prognoza sostojanija atmosfernogo vozduha na territorijah gornopromyshlennyh aglomeracij [Development of remote sensing methods and forecasting the state of atmospheric air in the territories of mining agglomerations], PhD’s thesis, Saint-Petersburg, Saint-Petersburg mining university, 2019, 187 p. [In Russ].

33. Pashkevich M. A., Smirnov Ju. D., Danilov A. S. Estimation of quality of environment with the use of small pilotless aircrafts. Zapiski Gornogo instituta. 2013, Vol. 204, pp. 269—271. [In Russ].

34. Kremcheev Je. A., Danilov A. S., Smirnov Ju. D. Metrological support of monitoring systems based on unmanned aerial vehicles. Zapiski Gornogo instituta. 2019, Vol. 235, pp. 96—105. DOI: 10.31897/PMI.2019.1.96. [In Russ].

35. Volkov V. G., Gindin P. D., Karpov V. V., Kuznecov S. A., Mitrofanov Ju. S., Sennik B. N. Imaging devices for energy saving and environmental control. Kontenant. 2019, Vol. 18, no. 4, pp. 620—628. [In Russ].

36. Alekseenko, Vladimir A., Shvydkaya, Natalya V., Alekseenko, Alexey V., et al. Element accumulation patterns of native plant species under the natural geochemical stress. Plants. 2021. Vol. 10. no. 1. Article 33. DOI: 10.3390/plants10010033.

37. Cherepanov A. S. Vegetation indexes. Geomatika. 2011, no. 2, pp. 98—102. [In Russ].

38. Strizhenok A. V.,  Ivanov  A.  V.  Ecological  assessment  of  the  current  state of environmental components on the territory of the impact of  cement  production industry. Journal of Ecological Engineering. 2017. Vol. 18. no. 6. pp. 160—165. DOI: 10.12911/22998993/76850.

39. Osipov A. G., Dmitriev V. V., Kovyazin V. F. Methods of analyzing landscape ecosystem diversity of a region based on remote sensing. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2020, Vol. 331, no. 10. pp. 49—57. DOI: 10.18799/24131830/2020/10/2849. [In Russ].

40. Wang L., Wei Y. Revised normalized difference nitrogen index (NDNI) for estimating canopy nitrogen concentration in wetlands. Optik. 2016. Vol. 127. no. 19. pp. 7676—7688. DOI: 10.1016/j.ijleo.2016.05.115.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.