Dynamic braking of asynchronous motor drive of belt conveyor for load minimization in transient conditions

The goal of the research is enhancement of belt conveyor efficiency and reduction of conveyance and power cost in the mining industry. The main research tool is the developed mathematical model of a conveyor, which allows analyzing transient behavior of asynchronous motor drives of the conveyor transport. The subject of the research are the braking conditions of asynchronous motor drives of belt conveyors. The research uses the methods of modern theory of electrical machinery, theory of control and mathematical modeling. The application of the dynamic braking of the conveyor drives is discussed. Dynamic braking essentially curtails the drive deceleration time when the conveyor belt slip is possible on the drive drum, and can also diminish heat loss. The automatic tensioner can ensure pulling ability of drives. The research result is the developed mathematical model of the dynamic braking of asynchronous motor drives for belt conveyors in mines with regard to coefficient of resistance of belt and rollers.

Keywords: belt conveyor, asynchronous motor drive, starting and braking conditions, dynamic braking, deceleration torque, pulling factor of conveyor, mathematical modeling.
For citation:

Dmitrieva V. V., Sobyanin A. A., Sizin P. E. Dynamic braking of asynchronous motor drive of belt conveyor for load minimization in transient conditions. MIAB. Mining Inf. Anal. Bull. 2025;(8):164-180. [In Russ]. DOI: 10.25018/0236_1493_2025_8_0_164.

Acknowledgements:
Issue number: 8
Year: 2025
Page number: 164-180
ISBN: 0236-1493
UDK: 621.313.332
DOI: 10.25018/0236_1493_2025_8_0_164
Article receipt date: 14.02.2025
Date of review receipt: 10.04.2025
Date of the editorial board′s decision on the article′s publishing: 10.07.2025
About authors:

V.V. Dmitrieva1, Cand. Sci. (Eng.), Assistant Professor, e-mail: dm-valeriya@yandex.ru,
A.A. Sobyanin1, Magister, e-mail: sobyanin99@yandex.ru,
P.E. Sizin, Cand. Sci. (Phys. Mathem.), e-mail: mstranger@list.ru, NUST MISIS, 119049, Moscow, Russia,
1 Gubkin Russian State University of Oil and Gas (National Research University), 119991, Moscow, Russia.

 

For contacts:

P.E. Sizin, e-mail: mstranger@list.ru.

Bibliography:

1. Yurchenko V. M. The workload of a conveyor belt as a reflection of the actual planogram of the cleaning combine in the cleaning face. Mining Science and Technology (Russia). 2019, vol. 4, no. 2, pp. 144—149. [In Russ]. DOI: 10.17073/2500-0632-2019-2-144-149.

2. Klebanov A. F. Automation and robotization of open-pit mining: experience of digital transformation. Russian Mining Industry Journal. 2020, no. 1, pp. 8—11. [In Russ].

3. Aslanov A. A., Gumennikov E. S. New solutions for mine transport for the transition to on-line mining. Mining Science and Technology (Russia). 2019, vol. 4, no. 4, pp. 262—272. [In Russ]. DOI: 10.17073/2500-0632-2019-4-262-272.

4. Sarathbabu Goriparti N. V., Murthy Ch. S. N., Aruna M. Minimization of specific energy of a belt conveyor drive system using space vector modulated direct torque control. International Journal of Innovative Technology and Exploring Engineering. 2019, vol. 8, no. 4, pp. 505—511. [In Russ].

5. Ke Qian Key Technology of starting and braking for downward belt conveyor with large inclination. Mine Engineering. 2020, vol. 8, no. 4, pp. 451—454. [In Russ]. DOI: 10.12677/ME.2020.84056.

6. Shengyong Mu. Research on the control system of the multi-point driving belt conveyor tension device. International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), 2020. [In Russ]. DOI: 10.1109/ICBAIE49996.2020.00074.

7. Lobova K., Lobov V. Choice of braking method of asynchronous electric motor for using in electric drives of conveyor equipment. Metallurgical and Mining Industry. 2015, vol. 7, no. 8, pp. 7—12. [In Russ].

8. Dmitrieva V. V., Sizin P. E., Sobyanin A. A. Application of the soft starter for the asynchronousmotor of the belt conveyor. IOP Conference Series: Earth and Environmental Science. 2021, vol. 942, no. 1, article 012003. [In Russ]. DOI: 10.1088/1755-1315/942/1/012003.

9. Dmitrieva V. V., Sobyanin A. A., Sizin P. E. Modeling of various modes of belt conveyor braking. MIAB. Mining Inf. Anal. Bull. 2022, no. 11, pp. 80—95. DOI: 10.25018/0236_1493_2022_11_0_80.

10. Marchenko A. A., Stoletov S. V. Investigation of mechanical characteristics of an asynchronous electric motor in operation mode generator braking. Tekhnicheskaya ekspluatatsiya vodnogo transporta: problemy i puti razvitiya. Materialy IV Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Technical operation of water transport: problems and ways of development. Proceedings of the IV International Scientific and Technical Conference], Petropavlovsk-Kamchatskiy, 2022, pp. 51—57. [In Russ].

11. Malinovsky A. K., Tkachenko P. V. Investigation of transient processes of an asynchronous motor operating in the electrodynamic braking mode with an electrolytic capacitor in a rectified rotor circuit. MIAB. Mining Inf. Anal. Bull. 2006, no. 3, pp. 66—71. [In Russ].

12. Xi Pingyuan, Song Yandong Dynamic simulation on the belt conveyor on emergency braking. Second International Conference on Intelligent Computation Technology and Automation. 2009, vol. 1, pp. 34—37. [In Russ]. DOI: 10.1109/ICICTA.2009.245.

13. Vershinin V. I., Makhonin S. V., Parshikov V. A., Khomyak V. A. Areas of application of the dynamic braking method in frequency-controlled drives of ship mechanisms. Transactions of the Krylov State Research Centre. 2018, vol. 386, no. 4, pp. 149–160. [In Russ]. DOI: 10.24937/2542-2324-20184-386-149-160.

14. Shraim L. M. A., Vnukov A. A. Application of the intelligent control method for dynamic braking of a frequency-controlled electric drive of a mechatronic system. RUDN Journal of Engineering Research. 2014, no. 1, pp. 68—75. [In Russ].

15. Klyuchev V. I. Teoriya elektroprivoda [Theory of electric drive], Moscow, Energoatomizdat, 1985, 560 p.

16. Dmitrieva V. V., Sizin P. E. The analysis of belt conveyor models at different number of approximating masses. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 34—46. [In Russ]. DOI: 10.25018/ 0236_1493_2022_1_0_34.

17. Zapenin I. V., Bel'for V. E. Modelirovanie perekhodnykh protsessov lentochnykh konveyerov [Modeling of transient processes of belt conveyors], Moscow, Nedra, 1969, 56 p.

18. Dmitriev V. G., Shakhmeyster L. G. Teoriya i raschet lentochnykh konveyerov [Theory and calculation of belt conveyors], Moscow, Mashinostroenie, 1987, 336 p.

19. Dmitriev V. G., Verzhanskiy A. P. Osnovy teorii lentochnykh konveyerov [Fundamentals of the theory of conveyor belts], Moscow, Izd-vo «Gornaya kniga», 2017, 590 p.

20. Bebic V., Ristic L. Speed controlled belt conveyors: Drives and mechanical considerations. Advances in Electrical and Computer Engineering. 2018, vol. 18, no. 1, pp. 51—60. DOI: 10.4316/ AECE.2018.01007.

21. Eshchin E. K. Control of dynamic loading of downhole scraper conveyors. Journal of Mining Institute. 2019, vol. 239, pp. 570—575. [In Russ]. DOI: 10.31897/PMI.2019.5.570.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.