# Mathematical model of rock compaction for operation in zones of high tectonic stresses

Authors: Pugach A. S.

The article presents the mathematical model of rock compaction for safety evaluation during coal mining. The model is developed for evaluating mining safety in zones of high tectonic stresses and nearby geological faults. The model takes into account subsidiary moduli of deformation: secant modulus, modulus of deformation in uniform compression and model of overall deformation in triaxial relaxation from stresses. The eigensolution is compared with the stress–strain assessment in the vicinity of a single fault and at two mutually effecting faults with regard to horizontal tectonic components of overburden pressure. The problem on distribution of bending moments which lead to distortion of roof support along the boundaries of three stopes with regard to their mutual influence is solved. Furthermore, stress patterns were calculated around stopes exposed to the effect of tectonic and gravity forces. The mathematical model results agree with the calculated data obtained by N.N. Fotieva, I.A. Turchaninov and V.N. Morozov to determine loading patterns in the vicinity of underground openings, assess influence exerted by gravity and tectonic components of overburden pressure, as well as estimate effects of faulting. The proposed mathematical model of rock compaction is applicable for the regional deep-level predictions in coal mines in zones of high tectonic stresses.

Keywords: mine, safety, rock burst, mathematical model, rocks, zones of tectonic stresses, stress–strain behavior, deep levels, rock compaction model, tectonic faults, deformation moduli.
For citation:

Pugach A. S. Mathematical model of rock compaction for operation in zones of high tectonic stresses. MIAB. Mining Inf. Anal. Bull. 2022;(6):167-181. [In Russ]. DOI: 10.25018/0236_1493_2022_6_0_167.

Acknowledgements:
Issue number: 6
Year: 2022
Page number: 167-181
ISBN: 0236-1493
UDK: 622.02:51-74:51-72
DOI: 10.25018/0236_1493_2022_6_0_167
Article receipt date: 25.01.2022
Date of review receipt: 09.02.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022

A.S. Pugach, Senior Lecturer, Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail: as.pugach@misis.ru, Alpugach@mail.ru, ORCID ID: 0000-0002-9353-4567.

For contacts:
Bibliography:

1. Puchkov L. A., Kaledina N. O., Kobylkin S. S. Natural science-based analysis of risk of recession. Gornyi Zhurnal. 2015, no. 5, pp. 4—7. [In Russ]. DOI: 10.17580/gzh.2015.05.01.

2. Kaledina N. O., Kolikov K. S., Kobylkin S. S. Mining safety and ecology department: past, present and future. Gornyi Zhurnal. 2018, no. 3, pp. 21—28. [In Russ]. DOI: 10.17580/ gzh.2018.03.04.

3. Malinnikova O., Uchaev D., Uchaev D., Malinnikov V. The study of coal tectonic disturbance using multifractal analysis of coal specimen images obtained by means of scanning electron microscopy. E3S Web of Conferences. 2019, vol. 129, no. 2, article 01017. DOI: 10.1051/ e3sconf/201912901017.

4. Zakharov V. N., Malinnikova O. N. Modeling geomechanical and geodynamic behavior of miningaltered rock mass with justifying mechanisms of initiation and growth of failure zones. Geomechanics and Geodynamics of Rock Masses: Selected Papers from the 2018 European Rock Mechanics Symposium. CRC Press, 2018, pp. 167—180.

5. Federal norms and rules in the field of industrial safety «Instruction on the forecast of significant values and monitoring of rocks during the development of coal deposits». Order of the Federal Service for Environmental, Technological and Nuclear Supervision No. 515, December 10, 2020. [In Russ].

6. Tianwei L., Hongwei Z., Sheng L., Jun H., Weihua S., Batugin A. S., Guoshui T. Numerical study on 4—1 coal seam of xiaoming mine in ascending mining. Scientific World Journal. 2015, no. 3, article 516095. DOI: 10.1155/2015/516095.

7. Lan T., Sun J., Batugin A. S., Zhao W., Zhang M., Jia W., Zhang Z. Dynamic characteristics of fault structure and its controlling impact on rock burst in mines. Shock and Vibration. 2021, vol. 2021, article 7954876. DOI: 10.1155/2021/7954876.

8. Lan T., Zhang H., Li S., Batugina I., Batugin A. Application and development of the method of geodynamic zoning according to geodynamic hazard forecasting at coal mines in China. IOP Conference Series: Earth and Environmental Science. 2019, vol. 221, no. 1, article 012088. DOI: 10.1088/1755-1315/221/1/012088.

9. Prognozirovanie zon vozmozhnoy tektonicheskoy narushennosti, available at: https://www. micromine.ru/possible-zones-of-tectonic-disturbance-prediction/ (accessed 31.12.2021). [In Russ].

10. Kovtanyuk L. V., Panchemko G. L. On compression of a heavy compresible layer of an elastoplastic or elastoviscoplastic medium. Mechanics of Solids. 2017, vol. 52, no. 6, pp. 653— 662. DOI: 10.3103/S002565441706005X.

11. Ustinov D. V. Choice of a model in a massif on the results of modeling the driving of underground tunnels. Geotekhnika. 2018, vol. 10, no. 5-6, pp. 34—50. [In Russ].

12. Kurlenya M. V., Seryakov V. M., Eremenko A. A. Tekhnogennye geomekhanicheskie polya napryazheniy [Technogenic geomechanical stress fields], Novosibirsk, Nauka, 2005, 264 p.

13. Spravochnik (kadastr) fizicheskikh svoystv gornykh porod. Pod red. N. V. Mel'nikova, V. V. Rzhevskogo, M. M. Protod'yakonova [Handbook (cadastre) of physical properties of rocks. Melnikov N. V., Rzhevsky V. V., Protodyakonov M. M. (Eds.)], Moscow, Nedra, 1975, 279 p.

14. Yakovlev D. V., Tsirel S. V., Mulev S. N. Patterns of development and methods of operational assessment of technogenic seismic activity at mining enterprises and in mining regions. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no. 2, pp. 34—47. [In Russ].

15. Kondner R. L., Zelasko J. S. A hyperbolic stress-strain formulation of sands. Proceedings of the 2nd Pan American Conference on Soil Mechanics and Foundation Engineering. 1963, vol. 1, pp. 289—324.

16. Duncan J. M., Chang C.-Y. Nonlinear analysis of stress and strain in soil. Journal of the Soil Mechanics and Foundation Division. 1970, vol. 96, pp. 1629—1653.

17. Janbu J. Soil compressibility as determined by oedometer and triaxial tests. Proceedings of European Conference on Soil Mechanics and Foundation Engineering (ECSMFE), Wiesbaden, 1963, vol. 1, pp. 19—25.

18. Von Soos P. Properties of soil and rock. Grundbautaschenbuch, Part 4. 4th ed. Berlin: Ernst and Sohn, 1980.

19. Fotieva N. N., Bulychev N. S., Deev P. V., Vladova V. V. Design of support of multiple non-circular workings in tectonic areas. Archives of Mining Sciences. 2008, vol. 53, no. 3, pp. 361—370.

20. Markov G. A. Tektonicheskie napryazheniya i gornoe davlenie v rudnikakh Khibinskogo massiva [Tectonic stresses and rock pressure in the mines of the Khibiny massif], Leningrad, Nauka, 1977, 213 p.

21. Mikhaylov Yu. V., Morozov V. N., Tatarinov V. N., Kolesnikov I. Yu. Bezopasnost' zhiznedeyatel'nosti. Modelirovanie i analiz poley napryazheniy v porodnykh massivakh: praktikum [Modeling and analysis of stress fields in mountain ranges: practical work], Moscow, Izd-vo MGOU, 2011, 53 p.

22. Kobylkin S. S., Kharisov A. R. Features of the design of ventilation of coal mines in the room-and-pillar system of mining operations. Journal of Mining Institute. 2020, vol. 245, pp. 531—538. [In Russ]. DOI: 10.31897/PMI.2020.5.

## Our partners

### Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.