Modern applications of terrestrial laser scanning

Nowadays there are a lot of applications in many branches of engineering geodesy where the Terrestrial Laser Scanning (TLS) is applied. It is mainly used for inventory measurements and detection of buildings displacements. The mentioned method is also commonly used to monitor engineering objects. The TLS is increasingly used in mining to obtain detailed data on mining excavations, passages and hoist towers. In addition, TLS allows creating digital terrain models. This method is still being improved. In this paper, the short characteristic of TLS is included and some examples of innovative application are presented. The first example describes the measurement of a historical building, which is the water tower in Wrocław (Poland). The obtained data were used to prepare a detailed architectural and construction documentation of external walls of the building. The other examples of TLS applications concern the investigation of deformations of a hydrotechnical facility and the control of verticality of a slender structure. The article emphasizes the universality of the laser scanning technique, which can be used to measure large and small objects.

Keywords: geodetic measurements, Terrestrial Laser Scanning, architectural–construction documentation, horizontal displacements, slender structure
For citation:

Kuczyńska G., Stawska M. Modern applications of terrestrial laser scanning. MIAB. Mining Inf. Anal. Bull. 2021;(1):160-169. [In Russ]. DOI: 10.25018/0236-1493-2021-1-0-160-169.

Acknowledgements:
Issue number: 1
Year: 2021
Page number: 160-169
ISBN: 0236-1493
UDK: 528.721.221.6
DOI: 10.25018/0236-1493-2021-1-0-160-169
Article receipt date: 02.04.2020
Date of review receipt: 19.05.2020
Date of the editorial board′s decision on the article′s publishing: 10.12.2020
About authors:

Gabriela Kuczyńska1, e-mail: 227742@student.pwr.edu.pl,
Magdalena Stawska1, e-mail: 227692@student.pwr.edu.pl,
1 Wrocław University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Wrocław, Poland.

 

For contacts:

G. Kuczyńska, e-mail: 227742@student.pwr.edu.pl.

Bibliography:

1. Yakar M., Yilmaz H. M., Mutluoglu O. Performance of photogrammetric and terrestrial laser scanning methods in volume computing of excavation and filling areas. Arabian Journal for Science and Engineering. 2014. Vol. 39. Pp. 387–394. DOI: 10.1007/s13369-013-0853-1.

2. Szwarkowski D., Moska M. Assessment of deformations in mining areas using the riegl VZ-400 terrestrial laser scanner. E3S Web of Conferences. 2018. Vol. 36. No. 02009. DOI: 10.1051/e3sconf/20183602009.

3. Pejić M. Design and optimisation of laser scanning for tunnels geometry inspection.Tunnelling and Underground Space Technology. 2013. Vol. 37. Pp. 199–206.

4. Muszyński Z., Rybak J., Kaczor P. Accuracy assessment of semi-automatic measuring techniques applied to displacement control in self-balanced pile capacity testing appliance. Sensors. 2018. Vol. 18. Issue 11. DOI: 10.3390/s18114067 .

5. Armesto-González J., Riveiro-Rodríguez B., González-Aguilera D., Rivas-Brea M. T. Terrestrial laser scanning intensity data applied to damage detection for historical buildings. Journal of Archeological Science. 2009. Vol. 37. Issue 12. DOI: 10.1016/j.jas.2010.06.031.

6. Armesto J., Ordóñez C., Alejano L., Arias P. Terrestrial laser scanning used to determine the geometry of a granite boulder for stability analysis purposes. Geomorphology. 2008. Vol. 106. Issues 3–4. Pp. 271–277. DOI: 10.1016/j.geomorph.2008.11.005.

7. Zaczek-Peplinska J., Strach M. (Eds.). Application of terrestrial laser scanning technology in selected issues of engineering geodesy. Oficyna Wydawnicza Politechniki Warszawskiej, 2017. [in Polish].

8. Biernat M., Stachyra A. K. Comparison of 3D models of the architectural object created on the basis of laser scanning and non-metric digital photos. Engineer’s Thesis. Wrocław University of Science and Technology, 2017. [in Polish].

9. Stawska M. Elaboration of the architectural documentation of a historic object based on the data from terrestrial laser scanning. Engineer’s Thesis, Wrocław University of Science and Technology, 2019. [in Polish].

10. Volchenko T. P., Tsvetkov K. A. Proposals for standardizing the minimum terms for conducting scientific research and developing project documentation for the preservation of cultural heritage. Stroitel'stvo — formirovanie sredy zhiznedeyatel'nosti: sbornik trudov XX Mezhdunarodnoy mezhvuzovskoy nauchno-prakticheskoy konferentsii studentov, magistrantov, aspirantov i molodykh uchenykh [Proceedings of XX International Scientific Conference on Construction the Formation of Living Environment], Moscow, 2017, pp. 32–34. [In Russ].

11. Vinogradov K., Stepanov D. «3D Portrait» of the Shukhov Tower. ARDIS: Architecture. Restoration. Design. Investment. Construction, 2011, Vol. 3, Issue 49, pp. 74–75. [In Russ].

12. Muszyński Z., Rybak J. Evaluation of terrestrial laser scanner accuracy in the control of hydrotechnical structures. Studia Geotechnica et Mechanica. 2017. Vol. 39. Issue 4. Pp. 45–57. DOI: 10.1515/sgem-2017-0036.

13. Jaksa M. B., Ho K., Woodward M. A. Management, training and education in geotechnical engineering (State of the Art Lecture 5). Proceedings 17th International Conference on Soil Mechanics and Geotechnical Engineering. Alexandria. 2009. Vol. 4. Pp. 3136–3170.

14. Airey D. W. A project-based approach to teaching geotechnical engineering. Proceedings 1st international conference on education and training in geo-engineering sciences. Constantza. Romania. 2008. Pp. 357–362.

15. Leonov A. V., Anikushkin M. N., Ivanov A. V., Ovcharov S. V., Bobkov A. E., Baturin Yu. M. Laser scanning and 3D modeling of the Shukhov hyperboloid tower in Moscow. Journal of Cultural Heritage. 2015. Vol. 16. Issue 4. pp. 551–559. DOI: 10.1016/j.culher.2014.09.014.

16. Muszyński Z., Milczarek W. Application of terrestrial laser scanning to study the geometry of slender object. IOP Conference Series: Earth and Environmental Science. 2017. Vol. 95. No 4. DOI: 10.1088/1755-1315/95/4/042069.

17. Karavaev Ya. S., Novikov V. Yu. Method of comparative assessment and control size of cast hull pieces by 3D Scanner. MIAB. Mining Inf. Anal. Bull. 2017, no 3, pp. 92–96. [In Russ].

18. Krotenok A. Yu., Shurygin D. N., Litovchenko T. V., Semenova Yu.A., Kharitonova V.R. Photogrammetry of images of air drones and ground-based laser scanning in open pit mine planning. MIAB. Mining Inf. Anal. Bull. 2017, no 12, pp. 50–55. [In Russ]. DOI: 10.25018/02361493-2017-12-0-50-55.

19. Syasko A. A., Grib N. N., Imaev V. S., Kolodeznikov I. I., Kachaev A. V. Application of Geoscan 401 unmanned aerial survey system to airborn magnetic measurements at iron ore deposits. MIAB. Mining Inf. Anal. Bull. 2019, Issue 12, pp. 151–160. [In Russ]. DOI: 10.25018/02361493-2019-12-0-151-160.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.