Application of composite reagent for flotation of target minerals in bulk copper–molybdenum concentrate

A composite reagent CR represented by delicately emulsified solution of kerosene with S–P-bearing components is studied as a new selective collector for flotation of Cu and Mo in bulk concentrate. The electron-donating atoms of sulfur and phosphorus in the structure of the reagent govern its predisposition to complexing and selective adsorption, while the alkyl radicals ensure high collectability relative to Cu and Mo sulfides. Using the methods of UV spectrophotomery (SHIMADSU 1800), laser spectroscopy (KEYENCE VK-9700) and scanning electron microscopy (LEO 1420VP INCA OXFORD ENERGY 350), adsorption of CR at chalcopyrite ad molybdenite is identified. The adsorption layer formed on these sulfide minerals is very specific, with uniform distribution of needle-shaped crystals of the reagent over chalcopyrite and molybdenite surface. A critical advantage of the composite reagent over conventional collectors is its indifference to pyrite, which is beneficial for the quality of the bulk copper–molybdenum concentrate. The application of the composite reagent in the bulk flotation cycle increases molybdenum and copper recovery in concentrate by 2.75 and 13.61%, respectively, at the reduced loss of the valuable components in tailings.

Keywords: flotation, adsorption, microscopy, copper–molybdenum ore, chalcopyrite, molybdenite, collector, composite reagent.
For citation:

Matveeva T. N., Chanturiya V. A., Getman V. V., A.Yu. Karkeshkina, Gromova N. K. Application of composite reagent for flotation of target minerals in bulk copper– molybdenum concentrate. MIAB. Mining Inf. Anal. Bull. 2021;(11):80-94. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_80.


The study was supported by the Ministry of Science and Higher Education of the Russian Federation, Project No. 13.1902.21.0018, Agreement No. 075-15-2020-802.

Issue number: 11
Year: 2021
Page number: 80-94
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2021_11_0_80
Article receipt date: 02.09.2021
Date of review receipt: 20.09.2021
Date of the editorial board′s decision on the article′s publishing: 10.10.2021
About authors:

T.N. Matveeva1, Dr. Sci. (Eng.), Deputy Director for Scientific Work, Head of Department, e-mail:,,
V.A. Chanturiya1, Dr. Sci. (Eng.), Professor, Аcademician of Russian Academy of Sciences, Scientific Director of Department, e-mail:, 0000-0002-4410-8182,
V.V. Getman1, Cand. Sci. (Eng.), Senior Researcher, e-mail:,,
A.Yu. Karkeshkina1, Researcher, e-mail:,,
N.K. Gromova1, Researcher, e-mail:,,
1 Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia.

For contacts:

N.K. Gromova, e-mail:


1. Metodicheskie rekomendatsii po primeneniyu Klassifikatsii zapasov mestorozhdeniy i prognoznykh resursov tverdykh poleznykh iskopaemykh. Molibdenovye rudy. Rasporyazhenie MPR Rossii ot 05.06.2007 № 37-r [Application guideline: Classification of mineral reserves and undiscovered potential resources of solid minerals. Molybdenum ore. RF Ministry of Natural Resources Decree No. 37-r as of 5 June 2007], Moscow, MPR RF, 2007, 37 p. [In Russ].

2. Abramov A. A. Physico-chemical modeling of flotation systems. Mineral Processing and Extractive Metallurgy Review. 1998, vol. 19, no. 1, pp. 409–459. Published online: 28 Nov 2010.

3. Abramov A. A., Forsberg K. S. E. Chemistry and optimal conditions for copper minerals flotation: Theory and practice. Mineral Processing and Extractive Metallurgy Review. 2005, vol. 26, no. 2, pp. 77–143.

4. Bakalarz A., Gloy G., Luszczkiewicz A. Flotation of sulfide components of copper ore in the presence of n-Dodecane. Mineral Processing and Extractive Metallurgy Review. 2015, vol. 36, no. 2, pp. 103–111. Published Online: 25 Sep 2014.

5. Bukhorov Sh. B., Khaydarov A. A., Khamraev S. S., Khalmatov M. M. Joint application of reagents in flotation of copper–molybdenum ore. Gornyi Zhurnal. 2009, no. 1, pp. 49–51. [In Russ].

6. Rudchekanova L. G., Radushev A. V., Baygacheva E. V., Chernova G. V. New collectors for flotation of sulfide ore. Obogashchenie rud. 2009, no. 1, pp. 34–36. [In Russ].

7. Abramov A. A. Tekhnologiya pererabotki i obogashcheniya rud tsvetnykh metallov. T. 3. Kniga 1 [Processing and concentration technology for nonferrous metal ore, vol. 3, book 1], Moscow, Izd-vo «Gornaya kniga», 2005, 575 p.

8. Gül A. The role of Na2S2O5 and activated carbon on the selective flotation of chalcopyrite from a copper ore using a dithiophosphine-type collector. Mineral Processing and Extractive Metallurgy Review. 2007, vol. 28 no. 3, pp. 235–245. Published Online: 07 May 2007.

9. Zhang Y., Tang Z., Shirokoff J. Study on flotability and surface oxidation of sulfide minerals from the tailing of an iron-copper mine using electron probe microanalyzer. Mineral Processing and Extractive Metallurgy Review. 2019. Published Online: 25 Dec 2019. DOI: 10.1080/ 08827508.2019.1707675.

10. Matveeva T. N., Chanturiya V. A., Getman V. V., Gromova N. K., Ryazantseva M. V., Karkeshkina A. Yu., Lantsova L. B., Minaev V. A. The effect of complexing reagents on flotation of sulfide minerals and cassiterite from tin-sulfide tailings. Mineral Processing and Extractive Metallurgy Review. 2020. Published Online: 21 Dec 2020. DOI: 10.1080/08827508.2020.1858080.

11. Bakalarz A. Chemical and mineral analysis of flotation tailings from stratiform copper ore from lubin concentrator plant (SW Poland). Mineral Processing and Extractive Metallurgy Review. 2019, vol. 40, no. 6, pp. 437–446. Published Online: 27 Sep 2019.

12. Chanturia V. A., Ivanova T. A., Getman V. V., Koporulina E. V. Methods of minerals modification by the microand nanoparticles of gold and platinum for the evaluation of the collectors selectivity at the flotation processing of noble metals from the fine ingrained ores. Mineral Processing and Extractive Metallurgy Review. 2015, vol. 36, no. 5, pp. 288–304.

13. Bobrakova А. А. Rationale reagent equipment regime of sulfide flotation of molybdenum ores alumosilicate composition. MIAB. Mining Inf. Anal. Bull. 2013, no. 12, pp. 298—301. [In Russ].

14. Karnaukhov S. N., Plyasovitsa S. S., Vilkova N. V. Processing technology for molybdenum-bearing ore. Tsvetnye metally. 2011, no. 8/9, pp. 55–61. [In Russ].

15. Delger R. Issledovanie i razrabotka effektivnoy tekhnologii, obespechivayushchey povyshenie izvlecheniya molibdena pri obogashchenii medno-molibdenovykh rud mestorozhdeniya «Erdenetiyn-Ovoo» (Mongoliya), v usloviyakh izmeneniya mineral'nogo sostava [A new efficient technology for enhanced recovery of molybdenum in processing of Mongolia’s Erdenetiin Ovoo Mine copper–molybdenum ore under conditions of varied mineral composition], Candidate’s thesis, Moscow, GINTsVETMET, 2012, 23 p.

16. Grujic M., Salatić D., Djurkoyić I., Grujić M. M. Flotability of copper, gold and platinum minerals in function of liberation rate and applied collector. Journal of Mining and Metallurgy A: Mining. 2004, vol. 40, no. 1, pp. 33—47.

17. Farinato R. S., Nagaraj L. R. Time dependent wettabiliti of mineral and metal surfaces in the presence of thiol surfactants. Journal of Adhesion Science and Technology, vol. 6, no. 12, pp. 1331–1345.

18. Bocharov V. A., KHachatryan L. S., Ignatkina V. A., Baatarkhuu Zh. Selecting sulfide copper–molybdenum concentrate separation techniques using high-molecular depressants. MIAB. Mining Inf. Anal. Bull. 2007, no. 8, pp. 235–242. [In Russ].

19. Miki H., Hirajima T., Muta Y., Suyantara G. P. W., Sasaki K. Investigation of reagents for selective flotation on chalcopyrite and molybdenite. Proceedings of the XXIX International Mineral Processing Congress, IMPC 2018. Canadian Institute of Mining, Metallurgy and Petroleum. 2019. pp. 1854–1861.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.