Application of information modeling technologies for surveying support of mining operations

The paper presents the main aspects of modeling objects that are special for mining enterprises and not found in projects of civil and industrial structures, such as: quarry surfaces, underground mine workings of various configurations, rock blocks and ground masses. The article demonstrates ways to resort to information modeling, which is actively developing in the field of construction of facilities, which implies the use of a single information model of the object, reflecting the entire life cycle of the building — from the project to the operation and further liquidation of the deposit. This will help to avoid most errors at the design stage, to conduct operational information control of production and processing during preparatory and extraction. On the example of the created models of mining enterprises, the possibilities of using software for information modeling and a single object file are demonstrated, starting from the design stage, until the end of mining operations, and then taking into account the reclamation or use of the object in a new functional purpose. The prospects of using information models of mining facilities and mine workings for calendar planning of work and optimization of field development projects, as well as data exchange between programs in the process of working on the information model are described.

Keywords: BIM, TIM, mining operations, input/output, information modeling, CIVIL 3D, Dynamo, underground measurement.
For citation:

Verbilo P. E., Iovlev G. A., Petrov N. E., Pavlenko G. D. Application of information modeling technologies for surveying support of mining operations. MIAB. Mining Inf. Anal. Bull. 2022;(6−2):60—79. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_60.

Acknowledgements:

authors express their gratitude to the employees of Sev. R. Development LLC for their assistance in writing the article and preparing materials, especially to Alexander Popov, Director of Digital Technologies.

Issue number: 6
Year: 2022
Page number: 60-79
ISBN: 0236-1493
UDK: 622.14
DOI: 10.25018/0236_1493_2022_62_0_60
Article receipt date: 14.01.2022
Date of review receipt: 20.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Verbilo P. E., Cand. Sci. (Eng.), assistant of Department of Mining Enterprises and Underground Structures, Saint Petersburg Mining University, 2, 21st Line, St Petersburg 199106, Russia, Verbilo_PE@pers.spmi.ru, https://orcid.org/0000-0001-6776-5866, РИНЦ Author ID: 883483, Author ID Scopus: 57190859525;
Iovlev G. A., Cand. Sci. (Eng.), assistant of Department of Mining Enterprises and Underground Structures, Saint Petersburg Mining University, 2, 21st Line, St Petersburg 199106, Russia, Iovlev_ga@pers.spmi.ru, https://orcid.org/0000-0002-8615-390X, РИНЦ Author ID: 1100244, Author ID Scopus: 57208318410;
Petrov N. E., student, Saint Petersburg Mining University, 2, 21st Line, St Petersburg 199106, Russia, ohneblut@gmail.com, +79215726129;
Pavlenko G. D., student, Saint Petersburg Mining University, 2, 21st Line, St Petersburg 199106, Russia, gosha.906@mail.ru.

 

For contacts:

Verbilo Pavel Eduardovich, e-mail: Verbilo_PE@pers.spmi.ru.

Bibliography:

1. Nagovicyn O. V. The concept and methods of formation of the mining and geological information system (MGIS MINEFRAME), Apatites, Kola Scientific Center of the Russian Academy of Sciences, 2018, 339 p. [In Russ].

2. Stadnik D. A., Gabaraev O. Z., Stadnik N. M., Grigoryan K. L. Improving the quality of digital «doubles» of mining enterprises on the basis of standardization of attributive filling of technological 3D models in GGIS. MIAB. Mining Inf. Anal. Bull. 2020, no. 11−1, pp. 202–212. [In Russ]. DOI: 10.25018/02361493-2020-111-0-202−212.

3. SHestakov K. I., Sokolov I. M., Pirogov M. A., Solov’ev S. G. Experience in the development, implementation and standardization of BIM design in the mining industry. Mining Industry. 2021, vol. 5, pp. 40–50. [In Russ].

4. Petrov N. E., Pavlenko G. D., Iovlev G. A. Use of BIM in designing a metro interchange station. BIMAC 2021. 2021, vol. 4, pp. 297–309. [In Russ].

5. Goldobina L. A., Orlov P. S BIM technologies and the experience of their implementation in the educational process during the preparation of bachelors in the direction 08.03.01 “Construction”. Journal of Mining Institute. 2017, vol. 224, pp. 263–272. DOI: 10.18454/ PMI.2017.2.263. [In Russ].

6. Geng D., Voitasik K. Application of BIM Technology in Subway Station Construction. International Research Journal of Engineering and Technology (IRJET). 2018, vol. 05, pp. 195–198.

7. Goldobina L. A., Demenkov P. A., Trushko V. L. The implementation of building information modeling technologies in the training of bachelors and masters at SaintPetersburg Mining university. ARPN Journal of Engineering and Applied Sciences. 2020, vol. 15, pp. 803–813.

8. M. Hosseini R., Banihashemi S., Chileshe N., Oraee Namzadi M., Udaeja C. BIM adoption within Australian Small and Medium-sized Enterprises (SMEs): an innovation diffusion model. Construction Economics and Building. 2016, vol. 16(3), pp. 71–86. DOI: 10.5130/AJCEB.v16i3.5159.

9. Rodnichenko E. K. Augmented Reality Techniques in Industrial Warehouse Logistics in Mining Industry. IOP Conf. Series: Earth and Environmental Science. 2021, vol. 688, pp. 1–7. DOI: 10.1088/1755−1315/688/1/012008.

10. Potapova E. V. Methodology for assessing geotechnical risks for metro facilities using the big data resource. MIAB. Mining Inf. Anal. Bull. 2021, no. 2—1, pp. 164–173. [In Russ]. DOI: 10.25018/0236-1493-2021-21−0-164−173.

11. Grigor’ev A. A., Kapitonova YU. S. Surveying control and accounting of mining volumes, Vladivostok, Publishing house of Far Eastern Federal University, 2013, 22 p. [In Russ].

12. Blischenko A. A., Gusev V. N. Anovar of Errors in Surveying Photogrammetric Measurements of Mountain Objects with the Help of Unmanned Aerial Vehicles. IOP Conf. Series: Earth and Environmental Science. 2021, vol. 720, pp. 1–5. DOI: 10.1088/1755−1315/720/1/012103.

13. Blischenko A. A. Modern mine survey techniques in the process of mining operations in open pit mines (Quarries). Scientific and Practical Studies of Raw Material Issues, Proceedings of the RussianGerman Raw Materials Dialogue: A Collection of Young Scientists Papers and Discussion. London, Taylor & Francis Group, 2019, pp. 58–62. DOI: 10.1201/9781003017226−8.

14. Kiselev V. A., Porshukov D. V. Justification of parameters of the photoplanimetric method for determining the cross section area of the horizontal openings, Topical Issues of Rational Use of Natural Resourses. London, Taylor & Francis Group, 2019, pp. 173−178.

15. Afanasyev A. S. Simulation model of the organization of technologicaltransport movement at a mining enterprise. Journal of Physics: Conference Series. 2021, vol. 1753, pp. 1–6. DOI:10.1088/1742−6596/1753/1/012008.

16. Smirnova O. M., Potemkin D. A. Influence of ground granulated blast furnace slag properties on the superplasticizers effect. International Journal of Civil Engineering and Technology. 2018, vol. 9, pp. 874–880.

17. Fomin S. I., Ligockij D. N., Argimbaev K. R. Open-pit mining planning. Saint Petersburg, Publishing house “Lan”, 2018, 60 p. [In Russ].

18. Bętkowski P. Modeling of information on the impact of mining exploitation on bridge objects in BIM. E3S Web of Conferences 36. 2018, vol. 01002, pp. 1–8. DOI: 10.1051/ e3sconf/20183601002.

19. Biancardo S. A., Intignano M., Viscione N., Guerra De Oliveira S., Tibaut A. Procedural Modeling-Based BIM Approach for Railway design. Journal of Advanced Transportation. 2021, vol. 2021, pp. 1–17. DOI: 10.1155/2021/8839362.

20. Hodorog A., Petri I., Rezgui Y., Hippolyte J-L. Building information modelling knowledge harvesting for energy efficiency in the Construction industry. Clean Technologies and Environmental Policy. 2021, vol. 23, pp. 1215–1231. DOI: 10.1007/s10098−020−02000-z.

21. Komolov V. V., Belikov A. A., Kankhva V. S., Mezina N. Assessment of the impact of the construction of semi-buried structures on the surrounding buildings and the road system. VIII International Scientific Conference Transport of Siberia. Warsaw, Polish Academy of Sciences, 2020, vol. 908, pp. 487–490.

22. Meng L., Hongliang Y., Ping L. An automated safety risk recognition mechanism for underground construction at the pre-construction stage based on BIM. Automation in Construction. 2018, vol. 91, pp. 284–292. DOI: 10.1016/j.autcon.2018.03.013.

23. Vignali V., Mariapola-Accerra E., Lantieri C., Di Vincenzo F., Piacentini G., Pancaldi S. Buidling information modeling application for an existing road infrastructure. Automation in Construction. 2021, vol. 128, pp. 1–10. DOI: 10.1016/j.autcon.2021.103752.

24. Wenjing L., Siyi L., Lin Z., Li Q. Information modeling of mine working based on BIM technology. Tunnelling and Underground Space Technology. 2021, vol. 115, pp. 1–10. DOI: 10.1016/j.tust.2021.103978.

25. Zinovieva O. M., Kuznetsov D. S., Merkulova A. M., Smirnova N. A. Digitalization of industrial safety management systems in mining. MIAB. Mining Inf. Anal. Bull. 2021, no. 2—1, pp. 113–123. [In Russ]. DOI: 10.25018/0236-1493-2021-21−0-113−123.

26. Protosenya A. G., Demenkov P. A., Trushko O. V., Verbilo P. E. Justification of Safe Plugging Options for Subway Tunnels Flooded in an Accident Based on Risk Assessment. International Journal of Applied Engineering Research. 2016, vol. 11, pp. 7897–7906.

27. Daller J., Žibert M., Exinger C., Lah M. Implementation of BIM in the tunnel design — Engineering consultant’s aspect. Geomechanics and Tunnelling. 2016, vol. 6, pp. 674–682. DOI: 10.1002/geot.201600054.

28. Pashkevich M. A., Petrova T. A. Assessment of areal air pollution in a megalopolis using geoinformation systems. Journal of Mining Institute. 2017, vol. 228, pp. 738–742. DOI: 10.25515/PMI.2017.6.738. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.